{"title":"Metal-Transfer-Micromolding of Air-Lifted RF Components","authors":"Yanzhu Zhao, Y. Yoon, Xiaosong Wu, M. Allen","doi":"10.1109/SENSOR.2007.4300216","DOIUrl":null,"url":null,"abstract":"This paper reports a metal-transfer-micromolding (MTM) technique for simultaneous implementation of metallized high aspect ratio molded polymer RF passive components, as well as coplanar waveguide feeding structures, in a high performance and potentially cost-effective fashion. Applications of the MTM technique in air-lifted RF components such as Ka-band monopole antennas and evanescent mode cavity resonators have been demonstrated. A 21.5% 10 dB bandwidth for the monopole antenna, and an unloaded Q exceeding 500 for the resonators, are achieved from micromolded organic materials.","PeriodicalId":23295,"journal":{"name":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"11 1","pages":"659-662"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2007.4300216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper reports a metal-transfer-micromolding (MTM) technique for simultaneous implementation of metallized high aspect ratio molded polymer RF passive components, as well as coplanar waveguide feeding structures, in a high performance and potentially cost-effective fashion. Applications of the MTM technique in air-lifted RF components such as Ka-band monopole antennas and evanescent mode cavity resonators have been demonstrated. A 21.5% 10 dB bandwidth for the monopole antenna, and an unloaded Q exceeding 500 for the resonators, are achieved from micromolded organic materials.