Higher-Order Effects in Biaxial Flexure of GFRP I-Section Beams

Zia Razzaq, Faridoon Z. Razzaq
{"title":"Higher-Order Effects in Biaxial Flexure of GFRP I-Section Beams","authors":"Zia Razzaq, Faridoon Z. Razzaq","doi":"10.24018/ejeng.2023.8.2.2967","DOIUrl":null,"url":null,"abstract":"A theoretical study of Glass Fiber Reinforced Polymer (GFRP) beams subjected to biaxial bending moments is presented with a focus on the influence of higher-order effects on maximum normal stresses. It is shown that the biaxial bending type of loading causes a dramatic increase in the maximum normal stress for a GFRP beam when induced torsional effects are included. The study demonstrates that the traditional first-order theory can grossly underestimate the maximum normal stress in a GFRP beam. Based on the numerical results presented using a higher-order theory which also accounts for induced warping normal stresses, the maximum normal stress is found to be about two to three times larger than that determined using the first-order theory.","PeriodicalId":12001,"journal":{"name":"European Journal of Engineering and Technology Research","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Engineering and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejeng.2023.8.2.2967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A theoretical study of Glass Fiber Reinforced Polymer (GFRP) beams subjected to biaxial bending moments is presented with a focus on the influence of higher-order effects on maximum normal stresses. It is shown that the biaxial bending type of loading causes a dramatic increase in the maximum normal stress for a GFRP beam when induced torsional effects are included. The study demonstrates that the traditional first-order theory can grossly underestimate the maximum normal stress in a GFRP beam. Based on the numerical results presented using a higher-order theory which also accounts for induced warping normal stresses, the maximum normal stress is found to be about two to three times larger than that determined using the first-order theory.
GFRP工字钢梁双轴弯曲的高阶效应
对受双轴弯矩作用的玻璃纤维增强聚合物(GFRP)梁进行了理论研究,重点研究了高阶效应对最大法向应力的影响。结果表明,当考虑诱导扭转效应时,双轴弯曲加载会导致GFRP梁的最大法向应力急剧增加。研究表明,传统的一阶理论严重低估了玻璃钢梁的最大法向应力。基于高阶理论的数值计算结果(该理论也考虑了诱导翘曲法向应力),发现最大法向应力比一阶理论所确定的大两到三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信