Automatic no-reference quality assessment for retinal fundus images using vessel segmentation

T. Köhler, A. Budai, Martin F. Kraus, J. Odstrcilík, G. Michelson, J. Hornegger
{"title":"Automatic no-reference quality assessment for retinal fundus images using vessel segmentation","authors":"T. Köhler, A. Budai, Martin F. Kraus, J. Odstrcilík, G. Michelson, J. Hornegger","doi":"10.1109/CBMS.2013.6627771","DOIUrl":null,"url":null,"abstract":"Fundus imaging is the most commonly used modality to collect information about the human eye background. Objective and quantitative assessment of quality for the acquired images is essential for manual, computer-aided and fully automatic diagnosis. In this paper, we present a no-reference quality metric to quantify image noise and blur and its application to fundus image quality assessment. The proposed metric takes the vessel tree visible on the retina as guidance to determine an image quality score. In our experiments, the performance of this approach is demonstrated by correlation analysis with the established full-reference metrics peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM). We found a Spearman rank correlation for PSNR and SSIM of 0.89 and 0.91. For real data, our metric correlates reasonable to a human observer, indicating high agreement to human visual perception.","PeriodicalId":20519,"journal":{"name":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","volume":"27 1","pages":"95-100"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2013.6627771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

Abstract

Fundus imaging is the most commonly used modality to collect information about the human eye background. Objective and quantitative assessment of quality for the acquired images is essential for manual, computer-aided and fully automatic diagnosis. In this paper, we present a no-reference quality metric to quantify image noise and blur and its application to fundus image quality assessment. The proposed metric takes the vessel tree visible on the retina as guidance to determine an image quality score. In our experiments, the performance of this approach is demonstrated by correlation analysis with the established full-reference metrics peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM). We found a Spearman rank correlation for PSNR and SSIM of 0.89 and 0.91. For real data, our metric correlates reasonable to a human observer, indicating high agreement to human visual perception.
基于血管分割的视网膜眼底图像自动无参考质量评估
眼底成像是收集人眼背景信息最常用的方法。对采集的图像进行客观、定量的质量评估是人工、计算机辅助和全自动诊断的必要条件。本文提出了一种量化图像噪声和模糊的无参考质量度量方法,并将其应用于眼底图像质量评价。提出的度量以视网膜上可见的血管树作为指导来确定图像质量评分。在我们的实验中,通过与已建立的全参考指标峰信噪比(PSNR)和结构相似性(SSIM)的相关性分析,证明了该方法的性能。我们发现PSNR和SSIM的Spearman秩相关分别为0.89和0.91。对于真实数据,我们的度量与人类观察者合理相关,表明与人类视觉感知高度一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信