Voting algorithms for unique games on complete graphs

Antoine M'eot, A. D. Mesmay, Moritz Mühlenthaler, Alantha Newman
{"title":"Voting algorithms for unique games on complete graphs","authors":"Antoine M'eot, A. D. Mesmay, Moritz Mühlenthaler, Alantha Newman","doi":"10.1137/1.9781611977585.ch12","DOIUrl":null,"url":null,"abstract":"An approximation algorithm for a constraint satisfaction problem is called robust if it outputs an assignment satisfying a $(1 - f(\\epsilon))$-fraction of the constraints on any $(1-\\epsilon)$-satisfiable instance, where the loss function $f$ is such that $f(\\epsilon) \\rightarrow 0$ as $\\epsilon \\rightarrow 0$. Moreover, the runtime of a robust algorithm should not depend in any way on $\\epsilon$. In this paper, we present such an algorithm for Min-Unique-Games on complete graphs with $q$ labels. Specifically, the loss function is $f(\\epsilon) = (\\epsilon + c_{\\epsilon} \\epsilon^2)$, where $c_{\\epsilon}$ is a constant depending on $\\epsilon$ such that $\\lim_{\\epsilon \\rightarrow 0} c_{\\epsilon} = 16$. The runtime of our algorithm is $O(qn^3)$ (with no dependence on $\\epsilon$) and can run in time $O(qn^2)$ using a randomized implementation with a slightly larger constant $c_{\\epsilon}$. Our algorithm is combinatorial and uses voting to find an assignment. It can furthermore be used to provide a PTAS for Min-Unique-Games on complete graphs, recovering a result of Karpinski and Schudy with a simpler algorithm and proof. We also prove NP-hardness for Min-Unique-Games on complete graphs and (using a randomized reduction) even in the case where the constraints form a cyclic permutation, which is also known as Min-Linear-Equations-mod-$q$ on complete graphs.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"44 1","pages":"124-136"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977585.ch12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An approximation algorithm for a constraint satisfaction problem is called robust if it outputs an assignment satisfying a $(1 - f(\epsilon))$-fraction of the constraints on any $(1-\epsilon)$-satisfiable instance, where the loss function $f$ is such that $f(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$. Moreover, the runtime of a robust algorithm should not depend in any way on $\epsilon$. In this paper, we present such an algorithm for Min-Unique-Games on complete graphs with $q$ labels. Specifically, the loss function is $f(\epsilon) = (\epsilon + c_{\epsilon} \epsilon^2)$, where $c_{\epsilon}$ is a constant depending on $\epsilon$ such that $\lim_{\epsilon \rightarrow 0} c_{\epsilon} = 16$. The runtime of our algorithm is $O(qn^3)$ (with no dependence on $\epsilon$) and can run in time $O(qn^2)$ using a randomized implementation with a slightly larger constant $c_{\epsilon}$. Our algorithm is combinatorial and uses voting to find an assignment. It can furthermore be used to provide a PTAS for Min-Unique-Games on complete graphs, recovering a result of Karpinski and Schudy with a simpler algorithm and proof. We also prove NP-hardness for Min-Unique-Games on complete graphs and (using a randomized reduction) even in the case where the constraints form a cyclic permutation, which is also known as Min-Linear-Equations-mod-$q$ on complete graphs.
完全图上唯一游戏的投票算法
约束满足问题的近似算法如果在任何$(1-\epsilon)$可满足的实例上输出满足约束的$(1 - f(\epsilon))$ -分数的赋值,则称为鲁棒算法,其中损失函数$f$使得$f(\epsilon) \rightarrow 0$等于$\epsilon \rightarrow 0$。此外,健壮算法的运行时间不应该以任何方式依赖于$\epsilon$。在这篇论文中,我们给出了一种具有$q$标签的完全图上最小唯一博弈的算法。具体来说,损失函数是$f(\epsilon) = (\epsilon + c_{\epsilon} \epsilon^2)$,其中$c_{\epsilon}$是一个常数,依赖于$\epsilon$,因此$\lim_{\epsilon \rightarrow 0} c_{\epsilon} = 16$。我们的算法的运行时为$O(qn^3)$(不依赖于$\epsilon$),并且可以使用一个随机实现和一个稍大的常量$c_{\epsilon}$在时间$O(qn^2)$中运行。我们的算法是组合的,并使用投票来找到一个分配。它可以进一步用于提供完全图上最小唯一博弈的PTAS,用更简单的算法和证明恢复Karpinski和Schudy的结果。我们还证明了完全图上最小唯一博弈的np -硬度,甚至在约束形成循环置换的情况下(使用随机化简),也称为完全图上的最小线性方程-mod- $q$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信