J. Dernotte, C. Mounaïm-Rousselle, F. Halter, P. Seers
{"title":"Evaluation of Butanol–Gasoline Blends in a Port Fuel-injection, Spark-Ignition Engine","authors":"J. Dernotte, C. Mounaïm-Rousselle, F. Halter, P. Seers","doi":"10.2516/OGST/2009034","DOIUrl":null,"url":null,"abstract":"This paper assesses different butanol–gasoline blends used in a port fuel-injection, spark-ignition engine to quantify the influence of butanol addition on the emission of unburned hydrocarbons, carbon monoxide, and nitrogen oxide. Furthermore, in-cylinder pressure was measured to quantify combustion stability and to compare the ignition delay and fully developed turbulent combustion phases as given by 0%–10% and 10%–90% Mass Fraction Burned (MFB). The main findings are: 1) a 40% butanol/60% gasoline blend by volume (B40) minimizes HC emissions; 2) no significant change in NOx emissions were observed, with the exception of the 80% butanol/20% gasoline blend; 3) the addition of butanol improves combustion stability as measured by the COV of IMEP; 4) butanol added to gasoline reduces ignition delay (0%–10% MFB); and 5) the specific fuel consumption of B40 blend is within 10% of that of pure gasoline for stoichiometric mixture.","PeriodicalId":19444,"journal":{"name":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","volume":"29 1","pages":"345-351"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"241","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2516/OGST/2009034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 241
Abstract
This paper assesses different butanol–gasoline blends used in a port fuel-injection, spark-ignition engine to quantify the influence of butanol addition on the emission of unburned hydrocarbons, carbon monoxide, and nitrogen oxide. Furthermore, in-cylinder pressure was measured to quantify combustion stability and to compare the ignition delay and fully developed turbulent combustion phases as given by 0%–10% and 10%–90% Mass Fraction Burned (MFB). The main findings are: 1) a 40% butanol/60% gasoline blend by volume (B40) minimizes HC emissions; 2) no significant change in NOx emissions were observed, with the exception of the 80% butanol/20% gasoline blend; 3) the addition of butanol improves combustion stability as measured by the COV of IMEP; 4) butanol added to gasoline reduces ignition delay (0%–10% MFB); and 5) the specific fuel consumption of B40 blend is within 10% of that of pure gasoline for stoichiometric mixture.