Is Private Learning Possible with Instance Encoding?

Nicholas Carlini, Samuel Deng, Sanjam Garg, S. Jha, Saeed Mahloujifar, Mohammad Mahmoody, Florian Tramèr
{"title":"Is Private Learning Possible with Instance Encoding?","authors":"Nicholas Carlini, Samuel Deng, Sanjam Garg, S. Jha, Saeed Mahloujifar, Mohammad Mahmoody, Florian Tramèr","doi":"10.1109/SP40001.2021.00099","DOIUrl":null,"url":null,"abstract":"A private machine learning algorithm hides as much as possible about its training data while still preserving accuracy. In this work, we study whether a non-private learning algorithm can be made private by relying on an instance-encoding mechanism that modifies the training inputs before feeding them to a normal learner. We formalize both the notion of instance encoding and its privacy by providing two attack models. We first prove impossibility results for achieving a (stronger) model. Next, we demonstrate practical attacks in the second (weaker) attack model on InstaHide, a recent proposal by Huang, Song, Li and Arora [ICML’20] that aims to use instance encoding for privacy.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"76 1","pages":"410-427"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

A private machine learning algorithm hides as much as possible about its training data while still preserving accuracy. In this work, we study whether a non-private learning algorithm can be made private by relying on an instance-encoding mechanism that modifies the training inputs before feeding them to a normal learner. We formalize both the notion of instance encoding and its privacy by providing two attack models. We first prove impossibility results for achieving a (stronger) model. Next, we demonstrate practical attacks in the second (weaker) attack model on InstaHide, a recent proposal by Huang, Song, Li and Arora [ICML’20] that aims to use instance encoding for privacy.
实例编码可以实现私人学习吗?
一种私人机器学习算法在保持准确性的同时尽可能多地隐藏其训练数据。在这项工作中,我们研究了非私有学习算法是否可以通过依赖实例编码机制来实现私有,该机制在将训练输入输入馈送给正常学习者之前对其进行修改。我们通过提供两种攻击模型形式化了实例编码及其隐私的概念。我们首先证明了实现(更强)模型的不可能结果。接下来,我们在InstaHide上演示了第二种(较弱的)攻击模型中的实际攻击,这是Huang, Song, Li和Arora [ICML ' 20]最近提出的一种攻击模型,旨在使用实例编码来保护隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信