Automatic feature definition and selection in fault diagnosis of oil rig motor pumps

E. D. Wandekokem, T. Rauber, F. M. Varejão, R. J. Batista
{"title":"Automatic feature definition and selection in fault diagnosis of oil rig motor pumps","authors":"E. D. Wandekokem, T. Rauber, F. M. Varejão, R. J. Batista","doi":"10.1109/ISIEA.2009.5356352","DOIUrl":null,"url":null,"abstract":"We present a collection of pattern recognition techniques applied to fault detection and diagnosis of motor pumps. Vibrational patterns are the basis for describing the condition of the process. We rely on the data-driven approach to the learning of the fault classes, i.e. supervised learning in pattern recognition. Our work is motivated by the diversity of the studied defects, the availability of real data from operational oil rigs, and the use of statistical pattern recognition techniques usually not explored sufficiently in similar works. We show the results of automatic methods to define, select and combine features that describe the process and to classify the faults on the provided examples. The support vector machine is chosen as the classification architecture.","PeriodicalId":6447,"journal":{"name":"2009 IEEE Symposium on Industrial Electronics & Applications","volume":"58 1","pages":"737-742"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Industrial Electronics & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA.2009.5356352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a collection of pattern recognition techniques applied to fault detection and diagnosis of motor pumps. Vibrational patterns are the basis for describing the condition of the process. We rely on the data-driven approach to the learning of the fault classes, i.e. supervised learning in pattern recognition. Our work is motivated by the diversity of the studied defects, the availability of real data from operational oil rigs, and the use of statistical pattern recognition techniques usually not explored sufficiently in similar works. We show the results of automatic methods to define, select and combine features that describe the process and to classify the faults on the provided examples. The support vector machine is chosen as the classification architecture.
石油钻机电油泵故障诊断中的特征自动定义与选择
我们提出了一套模式识别技术应用于电机泵的故障检测和诊断。振动模式是描述工艺条件的基础。我们依靠数据驱动的方法来学习故障类,即模式识别中的监督学习。我们的工作的动机是研究缺陷的多样性,来自操作石油钻井平台的真实数据的可用性,以及统计模式识别技术的使用,这些技术通常在类似的工作中没有得到充分的探索。给出了用自动方法定义、选择和组合描述过程的特征并对所提供的实例进行故障分类的结果。选择支持向量机作为分类体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信