Word Metric, Stationary Measure and Minkowski’s Question Mark Function

Uriya Pumerantz
{"title":"Word Metric, Stationary Measure and Minkowski’s Question Mark Function","authors":"Uriya Pumerantz","doi":"10.2478/udt-2020-0009","DOIUrl":null,"url":null,"abstract":"Abstract Given a countably infinite group G acting on some space X, an increasing family of finite subsets Gn, x∈ X and a function f over X we consider the sums Sn(f, x) = ∑g∈Gnf(gx). The asymptotic behaviour of Sn(f, x) is a delicate problem that was studied under various settings. In the following paper we study this problem when G is a specific lattice in SL (2, ℤ ) acting on the projective line and Gn are chosen using the word metric. The asymptotic distribution is calculated and shown to be tightly connected to Minkowski’s question mark function. We proceed to show that the limit distribution is stationary with respect to a random walk on G defined by a specific measure µ. We further prove a stronger result stating that the asymptotic distribution is the limit point for any probability measure over X pushed forward by the convolution power µ∗n.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"46 1","pages":"23 - 38"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2020-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Given a countably infinite group G acting on some space X, an increasing family of finite subsets Gn, x∈ X and a function f over X we consider the sums Sn(f, x) = ∑g∈Gnf(gx). The asymptotic behaviour of Sn(f, x) is a delicate problem that was studied under various settings. In the following paper we study this problem when G is a specific lattice in SL (2, ℤ ) acting on the projective line and Gn are chosen using the word metric. The asymptotic distribution is calculated and shown to be tightly connected to Minkowski’s question mark function. We proceed to show that the limit distribution is stationary with respect to a random walk on G defined by a specific measure µ. We further prove a stronger result stating that the asymptotic distribution is the limit point for any probability measure over X pushed forward by the convolution power µ∗n.
词度量、平稳测度与Minkowski问号函数
摘要给定作用于某空间X上的可数无限群G,有限子集Gn, X∈X的递增族以及函数f / X,考虑Sn(f, X) =∑G∈Gnf(gx)的和。Sn(f, x)的渐近性是一个在不同条件下研究的微妙问题。在下面的文章中,我们研究了当G是作用于射影线上的SL(2, 0)上的一个特定格,并且Gn是用度量一词来选择时的这个问题。对渐近分布进行了计算,并证明其与Minkowski的问号函数紧密相连。我们进一步证明了G上的随机游走的极限分布是平稳的,该随机游走由一个特定的测度µ定义。我们进一步证明了一个更强的结果,即渐近分布是由卷积幂μ∗n向前推进的X上的任何概率测度的极限点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信