A particle swarm optimization inspired tracker applied to visual tracking

C. Mollaret, F. Lerasle, I. Ferrané, J. Pinquier
{"title":"A particle swarm optimization inspired tracker applied to visual tracking","authors":"C. Mollaret, F. Lerasle, I. Ferrané, J. Pinquier","doi":"10.1109/ICIP.2014.7025085","DOIUrl":null,"url":null,"abstract":"Visual tracking is dynamic optimization where time and object state simultaneously influence the problem. In this paper, we intend to show that we built a tracker from an evolutionary optimization approach, the PSO (Particle Swarm optimization) algorithm. We demonstrated that an extension of the original algorithm where system dynamics is explicitly taken into consideration, it can perform an efficient tracking. This tracker is also shown to outperform SIR (Sampling Importance Resampling) algorithm with random walk and constant velocity model, as well as a previously PSO inspired tracker, SPSO (Sequential Particle Swarm Optimization). Experiments were performed both on simulated data and real visual RGB-D information. Our PSO inspired tracker can be a very effective and robust alternative for visual tracking.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Visual tracking is dynamic optimization where time and object state simultaneously influence the problem. In this paper, we intend to show that we built a tracker from an evolutionary optimization approach, the PSO (Particle Swarm optimization) algorithm. We demonstrated that an extension of the original algorithm where system dynamics is explicitly taken into consideration, it can perform an efficient tracking. This tracker is also shown to outperform SIR (Sampling Importance Resampling) algorithm with random walk and constant velocity model, as well as a previously PSO inspired tracker, SPSO (Sequential Particle Swarm Optimization). Experiments were performed both on simulated data and real visual RGB-D information. Our PSO inspired tracker can be a very effective and robust alternative for visual tracking.
将粒子群算法应用于视觉跟踪
视觉跟踪是时间和目标状态同时影响的动态优化问题。在本文中,我们打算展示我们从进化优化方法PSO(粒子群优化)算法构建跟踪器。我们证明了原始算法的扩展,其中明确地考虑了系统动力学,它可以执行有效的跟踪。该跟踪器还被证明优于随机漫步和恒速度模型的SIR(采样重要性重采样)算法,以及先前受PSO启发的跟踪器SPSO(顺序粒子群优化)。在模拟数据和真实视觉RGB-D信息上进行了实验。我们的PSO启发跟踪器可以是一个非常有效和强大的替代视觉跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信