Joint Mobile-Cloud Video Stabilization

G. S. Adesoye, Oliver Wang
{"title":"Joint Mobile-Cloud Video Stabilization","authors":"G. S. Adesoye, Oliver Wang","doi":"10.1109/CVPRW.2017.49","DOIUrl":null,"url":null,"abstract":"In this work we analyze the complex trade-off between data transfer, computation time, and power consumption when a multi-stage data-intensive algorithm (in this case video stabilization) is split between a low power mobile device and high power cloud server. We evaluate design choices in terms of which intermediate representations should be transferred to the server and back to the mobile device, and present a graph-based solution that can update the optimal joint mobile-cloud computation separation as the hardware configuration or user's requirements change. The practices we employ in this work can be extended to other mobile computer vision applications.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"61 1","pages":"353-360"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we analyze the complex trade-off between data transfer, computation time, and power consumption when a multi-stage data-intensive algorithm (in this case video stabilization) is split between a low power mobile device and high power cloud server. We evaluate design choices in terms of which intermediate representations should be transferred to the server and back to the mobile device, and present a graph-based solution that can update the optimal joint mobile-cloud computation separation as the hardware configuration or user's requirements change. The practices we employ in this work can be extended to other mobile computer vision applications.
联合移动云视频稳定
在这项工作中,我们分析了当多阶段数据密集型算法(在本例中为视频稳定)在低功率移动设备和高功率云服务器之间分离时,数据传输,计算时间和功耗之间的复杂权衡。我们根据中间表示应该转移到服务器和返回到移动设备来评估设计选择,并提出了一个基于图形的解决方案,该解决方案可以随着硬件配置或用户需求的变化而更新最佳联合移动云计算分离。我们在这项工作中采用的实践可以扩展到其他移动计算机视觉应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信