Dependence of the fire retardant and fire extinguishing efficiency of compositions based on phosphates of bivalent and trivalent ammonium metals on their physicochemical properties
Валентина Владимировна Богданова, Ольга Игоревна Кобец, Александр Васильевич Врублевский
{"title":"Dependence of the fire retardant and fire extinguishing efficiency of compositions based on phosphates of bivalent and trivalent ammonium metals on their physicochemical properties","authors":"Валентина Владимировна Богданова, Ольга Игоревна Кобец, Александр Васильевич Врублевский","doi":"10.33408/2519-237x.2020.4-4.367","DOIUrl":null,"url":null,"abstract":"Purpose. The object of research were fire-retardant and fire-extinguishing agents based on ammonium phosphates of bivalent and trivalent metals used for the treatment of forest combustible materials (FCM), including wood and peat. The subject of the research was to determine the fire-retardant and fire-extinguishing effectiveness of these agents, depending on their physical and chemical properties determined by the conditions of synthesis. The aim was to establish common traits or difference in the mechanism of inhibition of combustion of FCM by metallophosphate systems of various chemical compositions, as well as to reveal the role of the processes occurring in the condensed phase under the influence of their thermal decomposition products. The main task was to study the physicochemical, thermal properties of fire-retardant and fire-extinguishing agents, as well as fire-protected samples of peat and other FCM in the temperature range on the burning surface of natural materials (200–500 °C). \nMethods. X-ray phase analysis, differential scanning calorimetry, chemical analysis. \nFindings. The factors determining the fire-retardant and fire-extinguishing efficiency of synthetic agents based on phosphates of bivalent and trivalent ammonium metals with controlled properties depending on the synthesis conditions with respect to FCM, wood and peat have been determined. A process has been established that has a dominant effect on stopping their combustion – inhibition of radical reactions in the gas phase by volatile nitrogen-containing products. At the same time, it was shown that when developing new fire-retardant and fire-extinguishing agents, it is necessary to take into account their properties such as the ability to form thermal insulating structures in the condensed phase. \nApplication field of research. The results obtained in this work can be used to create new fire-retardant and fire-extinguishing synthetic compositions based on ammonium phosphates of bivalent and trivalent metals for the treatment of forest fuels.","PeriodicalId":15456,"journal":{"name":"Journal of Computers","volume":"43 1","pages":"367-377"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33408/2519-237x.2020.4-4.367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose. The object of research were fire-retardant and fire-extinguishing agents based on ammonium phosphates of bivalent and trivalent metals used for the treatment of forest combustible materials (FCM), including wood and peat. The subject of the research was to determine the fire-retardant and fire-extinguishing effectiveness of these agents, depending on their physical and chemical properties determined by the conditions of synthesis. The aim was to establish common traits or difference in the mechanism of inhibition of combustion of FCM by metallophosphate systems of various chemical compositions, as well as to reveal the role of the processes occurring in the condensed phase under the influence of their thermal decomposition products. The main task was to study the physicochemical, thermal properties of fire-retardant and fire-extinguishing agents, as well as fire-protected samples of peat and other FCM in the temperature range on the burning surface of natural materials (200–500 °C).
Methods. X-ray phase analysis, differential scanning calorimetry, chemical analysis.
Findings. The factors determining the fire-retardant and fire-extinguishing efficiency of synthetic agents based on phosphates of bivalent and trivalent ammonium metals with controlled properties depending on the synthesis conditions with respect to FCM, wood and peat have been determined. A process has been established that has a dominant effect on stopping their combustion – inhibition of radical reactions in the gas phase by volatile nitrogen-containing products. At the same time, it was shown that when developing new fire-retardant and fire-extinguishing agents, it is necessary to take into account their properties such as the ability to form thermal insulating structures in the condensed phase.
Application field of research. The results obtained in this work can be used to create new fire-retardant and fire-extinguishing synthetic compositions based on ammonium phosphates of bivalent and trivalent metals for the treatment of forest fuels.