Hongzhe Li, Jiazhi Ding, Longji Zhu, Fei Xu, Wenjing Li, Yanpo Yao, Li Cui
{"title":"Single-cell Raman and functional gene analyses reveal microbial P solubilization in agriculture waste-modified soils.","authors":"Hongzhe Li, Jiazhi Ding, Longji Zhu, Fei Xu, Wenjing Li, Yanpo Yao, Li Cui","doi":"10.1002/mlf2.12053","DOIUrl":null,"url":null,"abstract":"<p><p>Application of agricultural waste such as rapeseed meal (RM) is regarded as a sustainable way to improve soil phosphorus (P) availability by direct nutrient supply and stimulation of native phosphate-solubilizing microorganisms (PSMs) in soils. However, exploration of the in situ microbial P solubilizing function in soils remains a challenge. Here, by applying both phenotype-based single-cell Raman with D<sub>2</sub>O labeling (Raman-D<sub>2</sub>O) and genotype-based high-throughput chips targeting carbon, nitrogen and P (CNP) functional genes, the effect of RM application on microbial P solubilization in three typical farmland soils was investigated. The abundances of PSMs increased in two alkaline soils after RM application identified by single-cell Raman D<sub>2</sub>O. RM application reduced the diversity of bacterial communities and increased the abundance of a few bacteria with reported P solubilization function. Genotypic analysis indicated that RM addition generally increased the relative abundance of CNP functional genes. A correlation analysis of the abundance of active PSMs with the abundance of soil microbes or functional genes was carried out to decipher the linkage between the phenotype and genotype of PSMs. <i>Myxococcota</i> and C degradation genes were found to potentially contribute to the enhanced microbial P release following RM application. This work provides important new insights into the in situ function of soil PSMs. It will lead to better harnessing of agricultural waste to mobilize soil legacy P and mitigate the P crisis.</p>","PeriodicalId":35671,"journal":{"name":"Arquivos de Gastroenterologia","volume":"59 1 1","pages":"190-200"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arquivos de Gastroenterologia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/mlf2.12053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Application of agricultural waste such as rapeseed meal (RM) is regarded as a sustainable way to improve soil phosphorus (P) availability by direct nutrient supply and stimulation of native phosphate-solubilizing microorganisms (PSMs) in soils. However, exploration of the in situ microbial P solubilizing function in soils remains a challenge. Here, by applying both phenotype-based single-cell Raman with D2O labeling (Raman-D2O) and genotype-based high-throughput chips targeting carbon, nitrogen and P (CNP) functional genes, the effect of RM application on microbial P solubilization in three typical farmland soils was investigated. The abundances of PSMs increased in two alkaline soils after RM application identified by single-cell Raman D2O. RM application reduced the diversity of bacterial communities and increased the abundance of a few bacteria with reported P solubilization function. Genotypic analysis indicated that RM addition generally increased the relative abundance of CNP functional genes. A correlation analysis of the abundance of active PSMs with the abundance of soil microbes or functional genes was carried out to decipher the linkage between the phenotype and genotype of PSMs. Myxococcota and C degradation genes were found to potentially contribute to the enhanced microbial P release following RM application. This work provides important new insights into the in situ function of soil PSMs. It will lead to better harnessing of agricultural waste to mobilize soil legacy P and mitigate the P crisis.
期刊介绍:
The journal Arquivos de Gastroenterologia (Archives of Gastroenterology), a quarterly journal, is the Official Publication of the Instituto Brasileiro de Estudos e Pesquisas de Gastroenterologia IBEPEGE (Brazilian Institute for Studies and Research in Gastroenterology), Colégio Brasileiro de Cirurgia Digestiva - CBCD (Brazilian College of Digestive Surgery) and of the Sociedade Brasileira de Motilidade Digestiva - SBMD (Brazilian Digestive Motility Society). It is dedicated to the publishing of scientific papers by national and foreign researchers who are in agreement with the aim of the journal as well as with its editorial policies.