Failure Prediction of Induction Motors: A Case Study using CSLGH900/6-214, 5.8 MW, 11 kV/3ph/50 Hz Sag Mill Motor at Goldfields, Damang Mine

C. K. Amuzuvi, H. Warden
{"title":"Failure Prediction of Induction Motors: A Case Study using CSLGH900/6-214, 5.8 MW, 11 kV/3ph/50 Hz Sag Mill Motor at Goldfields, Damang Mine","authors":"C. K. Amuzuvi, H. Warden","doi":"10.34257/gjrefvol20is2pg7","DOIUrl":null,"url":null,"abstract":"This paper proposes a generalised feed-forward artificial neural network model that fulfils the failure prediction of a three phase 5.8MW, 11 kV Slip-Ring SAG Mill Induction Motor at Goldfields Ghana Limited, Damang Mine. It provides a general understanding of three phase induction motors, faults associated with induction motors and also emphasizes the use of intelligent systems, particularly artificial neural network, a modern failure prediction technology of induction motors. Site analysis and motor data (Current, Power and Winding Temperatures) collection were conducted at the Damang Mine. Simulation results are presented using MATLAB software (2017a) package to develop the fault prediction model. The proposed feed-forward neural network used the Levenberg-Marquardt and Bayesian Regularisation in training.","PeriodicalId":12520,"journal":{"name":"Global Journal of Research In Engineering","volume":"371 1","pages":"7-28"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Research In Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/gjrefvol20is2pg7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a generalised feed-forward artificial neural network model that fulfils the failure prediction of a three phase 5.8MW, 11 kV Slip-Ring SAG Mill Induction Motor at Goldfields Ghana Limited, Damang Mine. It provides a general understanding of three phase induction motors, faults associated with induction motors and also emphasizes the use of intelligent systems, particularly artificial neural network, a modern failure prediction technology of induction motors. Site analysis and motor data (Current, Power and Winding Temperatures) collection were conducted at the Damang Mine. Simulation results are presented using MATLAB software (2017a) package to develop the fault prediction model. The proposed feed-forward neural network used the Levenberg-Marquardt and Bayesian Regularisation in training.
感应电机故障预测——以大芒金矿5.8 MW、11 kV/3ph/50 Hz CSLGH900/6-214凹陷磨电机为例
本文提出了一种广义前馈人工神经网络模型,用于达曼矿金矿有限公司三相5.8MW、11 kV滑环SAG磨机感应电动机的故障预测。它提供了三相异步电动机的一般理解,与异步电动机有关的故障,并强调了智能系统的使用,特别是人工神经网络,一种现代异步电动机故障预测技术。现场分析和电机数据(电流、功率和绕组温度)收集在达芒矿进行。利用MATLAB软件(2017a)包进行仿真,建立故障预测模型。所提出的前馈神经网络在训练中使用了Levenberg-Marquardt和贝叶斯正则化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信