Efficient Protocol for Gender Identification using Machine Learning

Anupama Mishra, A. K. Daniel
{"title":"Efficient Protocol for Gender Identification using Machine Learning","authors":"Anupama Mishra, A. K. Daniel","doi":"10.2139/ssrn.3562888","DOIUrl":null,"url":null,"abstract":"Gender identification of names is an important task to identify human beings. Gender identification uses many attributes as voice-based gender prediction, face-based, and many other attributes. The Natural Language Processing (NLP) is a technique which can identify easily and accurately. These identification problems can be classified through various techniques. The binary classification of gender is considered. The proposed model consists of Naive Bayes (NB), Decision Tree (DT), and Support Vector Machine (SVM) concepts for identifying the gender. The gender names an important key for identifying the gender based on the last character(s) of consonant/vowel features. The model supports the unigram, bigram, trigram, four-gram, and vowels postfix technique to identify the gender. The simulation result shows a better performance under unigram and bigram model compare to others.","PeriodicalId":11974,"journal":{"name":"EngRN: Engineering Design Process (Topic)","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Engineering Design Process (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3562888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gender identification of names is an important task to identify human beings. Gender identification uses many attributes as voice-based gender prediction, face-based, and many other attributes. The Natural Language Processing (NLP) is a technique which can identify easily and accurately. These identification problems can be classified through various techniques. The binary classification of gender is considered. The proposed model consists of Naive Bayes (NB), Decision Tree (DT), and Support Vector Machine (SVM) concepts for identifying the gender. The gender names an important key for identifying the gender based on the last character(s) of consonant/vowel features. The model supports the unigram, bigram, trigram, four-gram, and vowels postfix technique to identify the gender. The simulation result shows a better performance under unigram and bigram model compare to others.
使用机器学习的有效性别识别协议
姓名性别识别是人类身份识别的一项重要任务。性别识别使用许多属性,如基于语音的性别预测、基于面部的性别预测和许多其他属性。自然语言处理(NLP)是一种简便、准确的识别技术。这些识别问题可以通过各种技术进行分类。考虑了性别的二元分类。该模型由朴素贝叶斯(NB)、决策树(DT)和支持向量机(SVM)概念组成,用于识别性别。性别名称是基于辅音/元音特征的最后一个字符来识别性别的重要关键。该模型支持单字母、双字母、三字母、四字母和元音后缀技术来识别性别。仿真结果表明,单图模型和双图模型具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信