On the approach problem for a control system on a finite time interval

IF 0.3 Q4 MATHEMATICS
V. Ushakov, A. Ushakov
{"title":"On the approach problem for a control system on a finite time interval","authors":"V. Ushakov, A. Ushakov","doi":"10.35634/2226-3594-2022-60-07","DOIUrl":null,"url":null,"abstract":"A conflict-controlled system in a finite-dimensional Euclidean space is considered. We study the game problem of approaching the system to the goal set in the phase space over a finite time interval. The study of the problem is based on methods developed in the theory of positional differential games. Within the framework of this theory, an approach to constructing approximate solutions to the approach problem is presented.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":"53 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2022-60-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A conflict-controlled system in a finite-dimensional Euclidean space is considered. We study the game problem of approaching the system to the goal set in the phase space over a finite time interval. The study of the problem is based on methods developed in the theory of positional differential games. Within the framework of this theory, an approach to constructing approximate solutions to the approach problem is presented.
有限时间区间上控制系统的逼近问题
研究有限维欧氏空间中的冲突控制系统。研究了系统在有限时间间隔内逼近相空间目标集的对策问题。这个问题的研究是基于在位置微分对策理论中发展起来的方法。在该理论的框架内,提出了一种构造逼近问题近似解的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信