FLaME: Fast Lightweight Mesh Estimation Using Variational Smoothing on Delaunay Graphs

W. N. Greene, N. Roy
{"title":"FLaME: Fast Lightweight Mesh Estimation Using Variational Smoothing on Delaunay Graphs","authors":"W. N. Greene, N. Roy","doi":"10.1109/ICCV.2017.502","DOIUrl":null,"url":null,"abstract":"We propose a lightweight method for dense online monocular depth estimation capable of reconstructing 3D meshes on computationally constrained platforms. Our main contribution is to pose the reconstruction problem as a non-local variational optimization over a time-varying Delaunay graph of the scene geometry, which allows for an efficient, keyframeless approach to depth estimation. The graph can be tuned to favor reconstruction quality or speed and is continuously smoothed and augmented as the camera explores the scene. Unlike keyframe-based approaches, the optimized surface is always available at the current pose, which is necessary for low-latency obstacle avoidance. FLaME (Fast Lightweight Mesh Estimation) can generate mesh reconstructions at upwards of 230 Hz using less than one Intel i7 CPU core, which enables operation on size, weight, and power-constrained platforms. We present results from both benchmark datasets and experiments running FLaME in-the-loop onboard a small flying quadrotor.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"312 1","pages":"4696-4704"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We propose a lightweight method for dense online monocular depth estimation capable of reconstructing 3D meshes on computationally constrained platforms. Our main contribution is to pose the reconstruction problem as a non-local variational optimization over a time-varying Delaunay graph of the scene geometry, which allows for an efficient, keyframeless approach to depth estimation. The graph can be tuned to favor reconstruction quality or speed and is continuously smoothed and augmented as the camera explores the scene. Unlike keyframe-based approaches, the optimized surface is always available at the current pose, which is necessary for low-latency obstacle avoidance. FLaME (Fast Lightweight Mesh Estimation) can generate mesh reconstructions at upwards of 230 Hz using less than one Intel i7 CPU core, which enables operation on size, weight, and power-constrained platforms. We present results from both benchmark datasets and experiments running FLaME in-the-loop onboard a small flying quadrotor.
FLaME:基于Delaunay图变分平滑的快速轻量级网格估计
我们提出了一种轻量级的密集在线单目深度估计方法,能够在计算受限的平台上重建三维网格。我们的主要贡献是将重建问题作为场景几何的时变Delaunay图上的非局部变分优化,这允许一种有效的,无关键帧的深度估计方法。该图形可以调整以支持重建质量或速度,并随着相机探索场景而不断平滑和增强。与基于关键帧的方法不同,优化的表面总是在当前姿态下可用,这对于低延迟避障是必要的。FLaME(快速轻量级网格估计)可以使用不到一个Intel i7 CPU内核以高达230 Hz的速度生成网格重建,这使得可以在尺寸,重量和功率受限的平台上运行。我们目前的结果从两个基准数据集和实验运行火焰在一个小型飞行四旋翼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信