{"title":"Restoring Well Productivity Through a Fit-for-Purpose Sludge Cleanout Job","authors":"Muhammad A Al Huraifi, A. Al-Taq, M. A. Hajri","doi":"10.2118/208111-ms","DOIUrl":null,"url":null,"abstract":"\n Sludge formation could significantly impair well productivity if deposited in the wellbore or surface flow lines. In a field where sludge formation is not common, an oil production well showed a sudden deterioration in well productivity. Thorough investigation of abnormal well performance, from surface and sub-surface perspective, indicated that the deposition of a thick layer of a tight emulsion across the surface choke has resulted in ceasing the oil flow to the gas oil separation plant. Extensive lab analysis indicated that the obstruction material was a sludge deposition promoted by the presence of asphaltene, high amount of iron and low pH brine. It is noteworthy to mention that the analytical results of lab prepared emulsion samples elucidate the rule of low pH aqueous solution, asphaltene and iron ions in inducing tight emulsion formation which helps to understand the root causes of sludge deposition. To come up with a cost-effective remedial treatment considering health, safety and environment (HSE), different emulsion breaking formulations, including different de-emulsifiers and anti-sludge agents, were examined in this study. An effective diesel-based formulation including proper de-emulsifier and anti-sludging agent was used during the execution of the field job. The design of the field job took into consideration a minimal footprint to the environment through the flowback of the well to the neighboring gas oil separation plant. This paper summarizes the joint efforts by production engineers and lab scientists to systemically tackle such major flow assurance issues which could significantly jeopardize wells productivity. The systemic approach starts with problem detection through well intervention and sample collection. It also includes the lab work which was carried out to identify the type and composition of deposition and evaluate/optimize a proper formulation for sludge deposition removal. The paper discusses in detail the design and execution of a successful field treatment, which has resulted in restoring and maintaining the well potential.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208111-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sludge formation could significantly impair well productivity if deposited in the wellbore or surface flow lines. In a field where sludge formation is not common, an oil production well showed a sudden deterioration in well productivity. Thorough investigation of abnormal well performance, from surface and sub-surface perspective, indicated that the deposition of a thick layer of a tight emulsion across the surface choke has resulted in ceasing the oil flow to the gas oil separation plant. Extensive lab analysis indicated that the obstruction material was a sludge deposition promoted by the presence of asphaltene, high amount of iron and low pH brine. It is noteworthy to mention that the analytical results of lab prepared emulsion samples elucidate the rule of low pH aqueous solution, asphaltene and iron ions in inducing tight emulsion formation which helps to understand the root causes of sludge deposition. To come up with a cost-effective remedial treatment considering health, safety and environment (HSE), different emulsion breaking formulations, including different de-emulsifiers and anti-sludge agents, were examined in this study. An effective diesel-based formulation including proper de-emulsifier and anti-sludging agent was used during the execution of the field job. The design of the field job took into consideration a minimal footprint to the environment through the flowback of the well to the neighboring gas oil separation plant. This paper summarizes the joint efforts by production engineers and lab scientists to systemically tackle such major flow assurance issues which could significantly jeopardize wells productivity. The systemic approach starts with problem detection through well intervention and sample collection. It also includes the lab work which was carried out to identify the type and composition of deposition and evaluate/optimize a proper formulation for sludge deposition removal. The paper discusses in detail the design and execution of a successful field treatment, which has resulted in restoring and maintaining the well potential.