{"title":"Almost contact structures on manifolds with a $G_2$ structure","authors":"Xenia de la Ossa, M. Larfors, Matthew Magill","doi":"10.4310/atmp.2022.v26.n1.a3","DOIUrl":null,"url":null,"abstract":"We review the construction of almost contact metric (three-) structures on manifolds with a G2 structure. These are of interest for certain supersymmetric configurations in string and M-theory. We compute the torsion of the SU(3) structure associated to an ACMS and apply these computations to heterotic G2 systems and supersymmetry enhancement. We initiate the study of the space of ACM3Ss, which is an infinite dimensional space with a local product structure and interesting topological features. Tantalising links between ACM3Ss and associative and coassociative submanifolds are observed. ar X iv :2 10 1. 12 60 5v 1 [ he pth ] 2 9 Ja n 20 21","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":"187 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2022.v26.n1.a3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 5
Abstract
We review the construction of almost contact metric (three-) structures on manifolds with a G2 structure. These are of interest for certain supersymmetric configurations in string and M-theory. We compute the torsion of the SU(3) structure associated to an ACMS and apply these computations to heterotic G2 systems and supersymmetry enhancement. We initiate the study of the space of ACM3Ss, which is an infinite dimensional space with a local product structure and interesting topological features. Tantalising links between ACM3Ss and associative and coassociative submanifolds are observed. ar X iv :2 10 1. 12 60 5v 1 [ he pth ] 2 9 Ja n 20 21
期刊介绍:
Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.