Almost contact structures on manifolds with a $G_2$ structure

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Xenia de la Ossa, M. Larfors, Matthew Magill
{"title":"Almost contact structures on manifolds with a $G_2$ structure","authors":"Xenia de la Ossa, M. Larfors, Matthew Magill","doi":"10.4310/atmp.2022.v26.n1.a3","DOIUrl":null,"url":null,"abstract":"We review the construction of almost contact metric (three-) structures on manifolds with a G2 structure. These are of interest for certain supersymmetric configurations in string and M-theory. We compute the torsion of the SU(3) structure associated to an ACMS and apply these computations to heterotic G2 systems and supersymmetry enhancement. We initiate the study of the space of ACM3Ss, which is an infinite dimensional space with a local product structure and interesting topological features. Tantalising links between ACM3Ss and associative and coassociative submanifolds are observed. ar X iv :2 10 1. 12 60 5v 1 [ he pth ] 2 9 Ja n 20 21","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2022.v26.n1.a3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 5

Abstract

We review the construction of almost contact metric (three-) structures on manifolds with a G2 structure. These are of interest for certain supersymmetric configurations in string and M-theory. We compute the torsion of the SU(3) structure associated to an ACMS and apply these computations to heterotic G2 systems and supersymmetry enhancement. We initiate the study of the space of ACM3Ss, which is an infinite dimensional space with a local product structure and interesting topological features. Tantalising links between ACM3Ss and associative and coassociative submanifolds are observed. ar X iv :2 10 1. 12 60 5v 1 [ he pth ] 2 9 Ja n 20 21
具有G_2结构的流形上的几乎接触结构
本文讨论了具有G2结构的流形上几乎接触度量(三)结构的构造。这些对于弦和m理论中的某些超对称构型是有意义的。我们计算了与ACMS相关的SU(3)结构的扭转,并将这些计算应用于异质G2系统和超对称增强。我们发起了acm3s空间的研究,它是一个具有局部积结构和有趣拓扑特征的无限维空间。观察到acm3s与结合子流形和协结合子流形之间的诱人联系。ar X iv:2 10 1。[au:] [au:] [au:] [au:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信