Novel flexible chipless RFID tags based on five state resonators

IF 1.2 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Engin Dogan, A. Gorur, A. Gorur
{"title":"Novel flexible chipless RFID tags based on five state resonators","authors":"Engin Dogan, A. Gorur, A. Gorur","doi":"10.1080/09205071.2023.2239806","DOIUrl":null,"url":null,"abstract":"In this paper, novel chipless radio frequency identification (RFID) tags are designed by using asymmetrical triple mode resonators constructed by an open loop resonator with two open stubs in different lengths. Three transmission zeros (bits) can be obtained by coupling a proposed resonator to a straight feeding line that connects input/output ports. Five frequency codes can be achieved with respect to the existence of the open stubs and the open loop resonator. By coupling eight asymmetrical triple mode resonators to the feeding line, a multi-resonant circuit is developed on a flexible substrate of Rogers 5870. Totally 24 bit frequencies can be achieved and it is possible to identify 58 different items. For the chipless RFID tags, two monopole wideband antennas in vertical/horizontal polarizations are integrated instead of the input/output ports. Two tags have been fabricated and tested to demonstrate the identification of different codes under smoothed and curved positions successfully.","PeriodicalId":15650,"journal":{"name":"Journal of Electromagnetic Waves and Applications","volume":"7 1","pages":"1317 - 1329"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromagnetic Waves and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205071.2023.2239806","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, novel chipless radio frequency identification (RFID) tags are designed by using asymmetrical triple mode resonators constructed by an open loop resonator with two open stubs in different lengths. Three transmission zeros (bits) can be obtained by coupling a proposed resonator to a straight feeding line that connects input/output ports. Five frequency codes can be achieved with respect to the existence of the open stubs and the open loop resonator. By coupling eight asymmetrical triple mode resonators to the feeding line, a multi-resonant circuit is developed on a flexible substrate of Rogers 5870. Totally 24 bit frequencies can be achieved and it is possible to identify 58 different items. For the chipless RFID tags, two monopole wideband antennas in vertical/horizontal polarizations are integrated instead of the input/output ports. Two tags have been fabricated and tested to demonstrate the identification of different codes under smoothed and curved positions successfully.
基于五态谐振器的新型柔性无芯片RFID标签
本文设计了一种新型的无芯片射频识别(RFID)标签,该标签采用由两个不同长度的开环谐振器构成的非对称三模谐振器。通过将所提出的谐振器耦合到连接输入/输出端口的直馈线上,可以获得三个传输零(位)。相对于开路存根和开环谐振器的存在,可以实现五种频率编码。通过将8个非对称三模谐振器耦合到馈线上,在罗杰斯5870柔性衬底上建立了多谐振电路。总共可以实现24位频率,并且可以识别58个不同的项目。对于无芯片RFID标签,集成了垂直/水平极化的两个单极宽带天线,而不是输入/输出端口。制作了两个标签并进行了测试,成功地展示了在光滑和弯曲位置下对不同代码的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electromagnetic Waves and Applications
Journal of Electromagnetic Waves and Applications 物理-工程:电子与电气
CiteScore
3.60
自引率
7.70%
发文量
116
审稿时长
3.3 months
期刊介绍: Journal of Electromagnetic Waves and Applications covers all aspects of electromagnetic wave theory and its applications. It publishes original papers and review articles on new theories, methodologies, and computational techniques, as well as interpretations of both theoretical and experimental results. The scope of this Journal remains broad and includes the following topics: wave propagation theory propagation in random media waves in composites and amorphous materials optical and millimeter wave techniques fiber/waveguide optics optical sensing sub-micron structures nano-optics and sub-wavelength effects photonics and plasmonics atmospherics and ionospheric effects on wave propagation geophysical subsurface probing remote sensing inverse scattering antenna theory and applications fields and network theory transients radar measurements and applications active experiments using space vehicles electromagnetic compatibility and interferometry medical applications and biological effects ferrite devices high power devices and systems numerical methods The aim of this Journal is to report recent advancements and modern developments in the electromagnetic science and new exciting applications covering the aforementioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信