Towards a universal tracking database

Gereon Schüller, Andreas Behrend
{"title":"Towards a universal tracking database","authors":"Gereon Schüller, Andreas Behrend","doi":"10.1145/2484838.2484845","DOIUrl":null,"url":null,"abstract":"In moving object databases, authors usually assume that number and position of objects to be processed are always known in advance. Detecting an unknown moving object and pursuing its movement, however, is usually left to tracking algorithms resting outside the database. Trackers are complex software systems which process sensor data and application-specific context information in order to detect, classify, monitor and predict the course of moving objects. As there are no universal software tools for realizing a tracker, such systems are usually hand-coded from scratch for each tracking application. In this paper we present a way how to implement a framework for implementing universal trackers inside a database. As a use case, we consider the well-known probabilistic multiple hypothesis tracking approach (PMHT) and the interacting multiple model filter (IMM) for realizing typical tracking tasks. We show that incremental view maintenance techniques and Bregman Ball trees are well-suited for efficiently implementing state-of-the-art trackers for processing streams of radar data.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"30 1","pages":"10:1-10:12"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484838.2484845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In moving object databases, authors usually assume that number and position of objects to be processed are always known in advance. Detecting an unknown moving object and pursuing its movement, however, is usually left to tracking algorithms resting outside the database. Trackers are complex software systems which process sensor data and application-specific context information in order to detect, classify, monitor and predict the course of moving objects. As there are no universal software tools for realizing a tracker, such systems are usually hand-coded from scratch for each tracking application. In this paper we present a way how to implement a framework for implementing universal trackers inside a database. As a use case, we consider the well-known probabilistic multiple hypothesis tracking approach (PMHT) and the interacting multiple model filter (IMM) for realizing typical tracking tasks. We show that incremental view maintenance techniques and Bregman Ball trees are well-suited for efficiently implementing state-of-the-art trackers for processing streams of radar data.
走向一个通用的跟踪数据库
在移动对象数据库中,作者通常假设要处理的对象的数量和位置总是事先已知的。然而,检测一个未知的运动物体并追踪它的运动,通常留给数据库之外的跟踪算法。跟踪器是复杂的软件系统,它处理传感器数据和特定应用的上下文信息,以检测、分类、监控和预测运动物体的过程。由于没有实现跟踪器的通用软件工具,这样的系统通常是为每个跟踪应用程序从头开始手工编码的。在本文中,我们提出了一种在数据库中实现通用跟踪器的框架的方法。作为一个用例,我们考虑了众所周知的概率多假设跟踪方法(PMHT)和交互多模型滤波器(IMM)来实现典型的跟踪任务。我们表明,增量视图维护技术和布雷格曼球树非常适合于有效地实现用于处理雷达数据流的最先进的跟踪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信