Error estimation and correction in a spiking neural network for map formation in neuromorphic hardware

Raphaela Kreiser, Gabriel Waibel, Nuria Armengol, Alpha Renner, Yulia Sandamirskaya
{"title":"Error estimation and correction in a spiking neural network for map formation in neuromorphic hardware","authors":"Raphaela Kreiser, Gabriel Waibel, Nuria Armengol, Alpha Renner, Yulia Sandamirskaya","doi":"10.1109/ICRA40945.2020.9197498","DOIUrl":null,"url":null,"abstract":"Neuromorphic hardware offers computing platforms for the efficient implementation of spiking neural networks (SNNs) that can be used for robot control. Here, we present such an SNN on a neuromorphic chip that solves a number of tasks related to simultaneous localization and mapping (SLAM): forming a map of an unknown environment and, at the same time, estimating the robot's pose. In particular, we present an SNN mechanism to detect and estimate errors when the robot revisits a known landmark and updates both the map and the path integration speed to reduce the error. The whole system is fully realized in a neuromorphic device, showing the feasibility of a purely SNN-based SLAM, which could be efficiently implemented in a small form-factor neuromorphic chip.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"34 1","pages":"6134-6140"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Neuromorphic hardware offers computing platforms for the efficient implementation of spiking neural networks (SNNs) that can be used for robot control. Here, we present such an SNN on a neuromorphic chip that solves a number of tasks related to simultaneous localization and mapping (SLAM): forming a map of an unknown environment and, at the same time, estimating the robot's pose. In particular, we present an SNN mechanism to detect and estimate errors when the robot revisits a known landmark and updates both the map and the path integration speed to reduce the error. The whole system is fully realized in a neuromorphic device, showing the feasibility of a purely SNN-based SLAM, which could be efficiently implemented in a small form-factor neuromorphic chip.
神经形态硬件中地图形成的尖峰神经网络误差估计与校正
神经形态硬件为峰值神经网络(snn)的有效实现提供了计算平台,可用于机器人控制。在这里,我们在神经形态芯片上提出了这样一个SNN,它解决了许多与同时定位和映射(SLAM)相关的任务:形成未知环境的地图,同时估计机器人的姿势。特别是,我们提出了一种SNN机制来检测和估计机器人重新访问已知地标时的误差,并更新地图和路径集成速度以减少误差。整个系统在神经形态器件中完全实现,表明了纯基于snn的SLAM的可行性,可以在小尺寸神经形态芯片中高效实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信