The Effect of Diet Induced Obesity on Serotonin in Zebrafish

L. Uyttebroek, S. V. Remoortel, Laura Buyssens, Nastasia Popowycz, G. Hubens, Jean-Pierre, Timmermans, L. Nassauw
{"title":"The Effect of Diet Induced Obesity on Serotonin in Zebrafish","authors":"L. Uyttebroek, S. V. Remoortel, Laura Buyssens, Nastasia Popowycz, G. Hubens, Jean-Pierre, Timmermans, L. Nassauw","doi":"10.33696/signaling.3.074","DOIUrl":null,"url":null,"abstract":"Obesity is a worldwide epidemic and a major risk factor for numerous diseases. The regulation of feeding behavior and body weight depends on a wide range of neuronal pathways influencing satiety and hunger. Serotonin (5-HT) is one of those players identified to have a profound effect on energy homeostasis. The effect of obesity on 5-HT metabolism in the gastrointestinal (GI) tract and its underlying mechanisms still needs to be further elaborated. The aim of the present study was to investigate the effect of diet-induced obesity (DIO) on 5-HT in the enteric nervous system, the expression of different enzymes and receptors of the 5-HT pathway in the brain and GI tract, GI transit and behavior. Zebrafish were fed either a high caloric diet during 4 weeks or a normal diet (CNTL). The proportion of serotonergic neurons in the GI tract was analyzed using immunofluorescent double staining. Quantitative PCR (qPCR) was performed on brain and GI tissue to analyze the expression of 5-HT receptors, the 5-HT precursor, tryptophan hydroxylase (tph), 5-HT transporter (SERTa/b) and monoamine oxidase (MAO). GI transit was measured by gavaging glass beads or providing fluorescently labeled food and calculating the geometric centre (GC). Swim behavior was calculated as preferential swim area, swim speed and distance. Results showed an increase in body mass index after 4 weeks. Overfeeding increased the proportion of serotonergic neurons in the proximal GI tract. qPCR revealed significantly elevated levels for tph2, but not for tph1a/b, in the brain and the intestine of DIO fish. Furthermore, a significant increase in the expression of the 5-HT4 receptor and SERTa were observed in the brain, but not in the GI tract, while 5-HT2b receptor showed to be upregulated in the GI tract, but not the brain. GC was increased after feeding with fluorescently labeled food. Also, the intestinal length in DIO fish was significantly larger, indicating higher transit rates compared to CNTL fish. No differences in behavior were observed between the two groups. This study, revealed an increase in 5-HT expression in enteric neurons probably due to an increased tph2 expression in the intestine, resulting in increased GI transit. Furthermore, DIO exhibited increased expression of the 5-HT4 receptor and SERTa in the brain, and 5-HT2b receptor in the GI tract, respectively. The present data obtained from zebrafish are in line with earlier findings in mammalian models and further validate the zebrafish as a model for GI research.","PeriodicalId":73645,"journal":{"name":"Journal of cellular signaling","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/signaling.3.074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Obesity is a worldwide epidemic and a major risk factor for numerous diseases. The regulation of feeding behavior and body weight depends on a wide range of neuronal pathways influencing satiety and hunger. Serotonin (5-HT) is one of those players identified to have a profound effect on energy homeostasis. The effect of obesity on 5-HT metabolism in the gastrointestinal (GI) tract and its underlying mechanisms still needs to be further elaborated. The aim of the present study was to investigate the effect of diet-induced obesity (DIO) on 5-HT in the enteric nervous system, the expression of different enzymes and receptors of the 5-HT pathway in the brain and GI tract, GI transit and behavior. Zebrafish were fed either a high caloric diet during 4 weeks or a normal diet (CNTL). The proportion of serotonergic neurons in the GI tract was analyzed using immunofluorescent double staining. Quantitative PCR (qPCR) was performed on brain and GI tissue to analyze the expression of 5-HT receptors, the 5-HT precursor, tryptophan hydroxylase (tph), 5-HT transporter (SERTa/b) and monoamine oxidase (MAO). GI transit was measured by gavaging glass beads or providing fluorescently labeled food and calculating the geometric centre (GC). Swim behavior was calculated as preferential swim area, swim speed and distance. Results showed an increase in body mass index after 4 weeks. Overfeeding increased the proportion of serotonergic neurons in the proximal GI tract. qPCR revealed significantly elevated levels for tph2, but not for tph1a/b, in the brain and the intestine of DIO fish. Furthermore, a significant increase in the expression of the 5-HT4 receptor and SERTa were observed in the brain, but not in the GI tract, while 5-HT2b receptor showed to be upregulated in the GI tract, but not the brain. GC was increased after feeding with fluorescently labeled food. Also, the intestinal length in DIO fish was significantly larger, indicating higher transit rates compared to CNTL fish. No differences in behavior were observed between the two groups. This study, revealed an increase in 5-HT expression in enteric neurons probably due to an increased tph2 expression in the intestine, resulting in increased GI transit. Furthermore, DIO exhibited increased expression of the 5-HT4 receptor and SERTa in the brain, and 5-HT2b receptor in the GI tract, respectively. The present data obtained from zebrafish are in line with earlier findings in mammalian models and further validate the zebrafish as a model for GI research.
饮食诱导肥胖对斑马鱼血清素的影响
肥胖是一种世界性的流行病,也是许多疾病的主要危险因素。摄食行为和体重的调节依赖于影响饱腹感和饥饿感的广泛的神经通路。5-羟色胺(5-HT)是那些被认为对能量稳态有深远影响的参与者之一。肥胖对胃肠道5-羟色胺代谢的影响及其潜在机制仍需进一步阐明。本研究旨在探讨饮食性肥胖(DIO)对肠道神经系统5-羟色胺(5-羟色胺)的影响、脑和胃肠道中5-羟色胺通路不同酶和受体的表达、GI转运和行为的影响。斑马鱼在4周内被喂食高热量饮食或正常饮食(CNTL)。采用免疫荧光双染色法分析胃肠道中血清素能神经元的比例。通过灌胃玻璃珠或提供荧光标记的食物并计算几何中心(GC)来测量GI转运。游泳行为计算为优先游泳区域、游泳速度和游泳距离。结果显示,4周后体重指数有所增加。过度喂养增加了近端胃肠道中血清素能神经元的比例。qPCR结果显示,DIO鱼的大脑和肠道中tph2水平显著升高,而tph1a/b水平无显著升高。此外,5-HT4受体和SERTa在大脑中表达显著增加,而在胃肠道中未见表达,5-HT2b受体在胃肠道中表达上调,而在大脑中未见表达上调。用荧光标记食物喂养后,GC增加。此外,与CNTL鱼相比,DIO鱼的肠道长度明显更大,表明转运率更高。没有观察到两组之间的行为差异。本研究显示肠道神经元中5-HT表达的增加可能是由于肠道中tph2表达的增加,导致GI转运增加。此外,DIO脑组织中5-HT4受体和SERTa以及胃肠道中5-HT2b受体的表达均有所增加。目前从斑马鱼身上获得的数据与早期在哺乳动物模型中的发现一致,进一步验证了斑马鱼作为GI研究模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信