Amal Rezka Putra, Khoirunnisa Fauziah Asyikin, Robertus Dwi Hendarto, A. Ariyanto, E. Lestari, S. Juliyanto, Ahsanal Fikri
{"title":"The Use of Low Ammonia Concentration in the Radiochemical Purity Test of [153Sm]Sm-EDTMP by Using the Thin Layer Chromatography Method","authors":"Amal Rezka Putra, Khoirunnisa Fauziah Asyikin, Robertus Dwi Hendarto, A. Ariyanto, E. Lestari, S. Juliyanto, Ahsanal Fikri","doi":"10.21776/ub.jpacr.2021.010.01.562","DOIUrl":null,"url":null,"abstract":"Radiochemical purity testing of [153Sm]Sm-EDTMP usually uses the Thin Layer Chromatography method. The mobile phase used is a mixture of 25% ammonia and water. However, the lowest ratio of 25% ammonia in the mobile phase is unknown. Therefore, research related to the use of the lowest concentration in the radiochemical purity test of [153Sm]Sm-EDTMP is necessary. This research method includes labelling of EDTMP using Samarium-153, preparation of the mobile phase with variations in the concentration of 25% ammonia: water, radiochemical purity test and data analysis using t-test statistics. The results of this study are the concentration of 25% ammonia: water (1: 9) to (1: 200) still shows good separation with Rf of [153Sm]SmCl3 and [153Sm]Sm-EDTMP at 0.0, 1.0 respectively, whereas with a thinner concentration of ammonia indicates less optimal separation with Rf [153Sm]SmCl3 at 0.35 to 1.0. Comparison of concentrated ammonia concentrations of 1: 9 and dilute 1: 200 was performed using a statistical t-test. The results of the data analysis showed that the two methods were not significantly different, indicated by the t-value of 0.82 less than 2.78. The conclusion of this study is that the lowest concentration of 25% ammonia and water in the radiochemical purity test of [153Sm]Sm-EDTMP is 1: 200.","PeriodicalId":22728,"journal":{"name":"The Journal of Pure and Applied Chemistry Research","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pure and Applied Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/ub.jpacr.2021.010.01.562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Radiochemical purity testing of [153Sm]Sm-EDTMP usually uses the Thin Layer Chromatography method. The mobile phase used is a mixture of 25% ammonia and water. However, the lowest ratio of 25% ammonia in the mobile phase is unknown. Therefore, research related to the use of the lowest concentration in the radiochemical purity test of [153Sm]Sm-EDTMP is necessary. This research method includes labelling of EDTMP using Samarium-153, preparation of the mobile phase with variations in the concentration of 25% ammonia: water, radiochemical purity test and data analysis using t-test statistics. The results of this study are the concentration of 25% ammonia: water (1: 9) to (1: 200) still shows good separation with Rf of [153Sm]SmCl3 and [153Sm]Sm-EDTMP at 0.0, 1.0 respectively, whereas with a thinner concentration of ammonia indicates less optimal separation with Rf [153Sm]SmCl3 at 0.35 to 1.0. Comparison of concentrated ammonia concentrations of 1: 9 and dilute 1: 200 was performed using a statistical t-test. The results of the data analysis showed that the two methods were not significantly different, indicated by the t-value of 0.82 less than 2.78. The conclusion of this study is that the lowest concentration of 25% ammonia and water in the radiochemical purity test of [153Sm]Sm-EDTMP is 1: 200.