Investigation on the Binding and Conformational Change of All-trans-Retinoic Acid with Peptidyl Prolyl cis/trans Isomerase Pin1 Using Spectroscopic and Computational Techniques
{"title":"Investigation on the Binding and Conformational Change of All-trans-Retinoic Acid with Peptidyl Prolyl cis/trans Isomerase Pin1 Using Spectroscopic and Computational Techniques","authors":"G. Zhu, ShaoLi Lyu, Yang Liu, Chao Ma, Wen Wang","doi":"10.1155/2021/1012078","DOIUrl":null,"url":null,"abstract":"Binding and conformational change of all-trans-retinoic acid (ATRA) with peptidyl prolyl cis/trans isomerase Pin1 were investigated systematically by spectroscopic and computational techniques under experimentally optimized physiological conditions. The intrinsic fluorescence of Pin1 was quenched through a static quenching mechanism in the presence of ATRA with binding constants on the order of 105 mol/L. Thermodynamic parameters (ΔH = 15.76 kJ/mol and ΔS = 158.36 J/mol·K at 293 K) and computational results illustrated that the hydrophobic interactions played a significant role in the binding process of ATRA to Pin1, but electrostatic forces, weak van der Waals, and hydrogen bonds cannot be ignored. Circular dichroism, fluorescence spectra, and computational simulations revealed that ATRA interacted with residues Lys63 and Arg69 of Pin1 to affect its conformational changes. Molecular dynamic simulation, principal component analysis, and free energy landscape monitored the dynamical conformational characteristics of ATRA binding to Pin1. All in all, the present research might provide a reference for the development and design of retinoic acid drugs that inhibit the activity of Pin1.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2021/1012078","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Binding and conformational change of all-trans-retinoic acid (ATRA) with peptidyl prolyl cis/trans isomerase Pin1 were investigated systematically by spectroscopic and computational techniques under experimentally optimized physiological conditions. The intrinsic fluorescence of Pin1 was quenched through a static quenching mechanism in the presence of ATRA with binding constants on the order of 105 mol/L. Thermodynamic parameters (ΔH = 15.76 kJ/mol and ΔS = 158.36 J/mol·K at 293 K) and computational results illustrated that the hydrophobic interactions played a significant role in the binding process of ATRA to Pin1, but electrostatic forces, weak van der Waals, and hydrogen bonds cannot be ignored. Circular dichroism, fluorescence spectra, and computational simulations revealed that ATRA interacted with residues Lys63 and Arg69 of Pin1 to affect its conformational changes. Molecular dynamic simulation, principal component analysis, and free energy landscape monitored the dynamical conformational characteristics of ATRA binding to Pin1. All in all, the present research might provide a reference for the development and design of retinoic acid drugs that inhibit the activity of Pin1.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.