Fekete-Szegö inequality for a subclass of analytic functions associated with Gegenbauer polynomials

IF 1 Q1 MATHEMATICS
M. Kamali
{"title":"Fekete-Szegö inequality for a subclass of analytic functions associated with Gegenbauer polynomials","authors":"M. Kamali","doi":"10.15330/cmp.14.2.582-591","DOIUrl":null,"url":null,"abstract":"In this paper, we define a subclass of analytic functions by denote $T_{\\beta}H\\left( z,C_{n}^{\\left( \\lambda \\right) }\\left( t\\right) \\right) $ satisfying the following subordinate condition \\begin{equation*} \\left( 1-\\beta \\right) \\left( \\frac{zf^{^{\\prime }}\\left( z\\right) }{f\\left( z\\right) }\\right) +\\beta \\left( 1+\\frac{zf^{^{\\prime \\prime }}\\left( z\\right) }{f^{^{\\prime }}\\left( z\\right) }\\right) \\prec \\frac{1}{\\left( 1-2tz+z^{2}\\right) ^{\\lambda }}, \\end{equation*} where $\\beta \\geq 0$, $\\lambda \\geq 0$ and $t\\in \\left( \\frac{1}{2},1\\right] $. We give coefficient estimates and Fekete-Szegö inequality for functions belong to this subclass.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.582-591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we define a subclass of analytic functions by denote $T_{\beta}H\left( z,C_{n}^{\left( \lambda \right) }\left( t\right) \right) $ satisfying the following subordinate condition \begin{equation*} \left( 1-\beta \right) \left( \frac{zf^{^{\prime }}\left( z\right) }{f\left( z\right) }\right) +\beta \left( 1+\frac{zf^{^{\prime \prime }}\left( z\right) }{f^{^{\prime }}\left( z\right) }\right) \prec \frac{1}{\left( 1-2tz+z^{2}\right) ^{\lambda }}, \end{equation*} where $\beta \geq 0$, $\lambda \geq 0$ and $t\in \left( \frac{1}{2},1\right] $. We give coefficient estimates and Fekete-Szegö inequality for functions belong to this subclass.
Fekete-Szegö与Gegenbauer多项式相关的解析函数子类的不等式
在本文中,我们定义了一个解析函数的子类,通过表示$T_{\beta}H\left( z,C_{n}^{\left( \lambda \right) }\left( t\right) \right) $满足以下从属条件\begin{equation*} \left( 1-\beta \right) \left( \frac{zf^{^{\prime }}\left( z\right) }{f\left( z\right) }\right) +\beta \left( 1+\frac{zf^{^{\prime \prime }}\left( z\right) }{f^{^{\prime }}\left( z\right) }\right) \prec \frac{1}{\left( 1-2tz+z^{2}\right) ^{\lambda }}, \end{equation*},其中$\beta \geq 0$, $\lambda \geq 0$, $t\in \left( \frac{1}{2},1\right] $。我们给出了属于这个子类的函数的系数估计和Fekete-Szegö不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信