Accelerated exploration Particle Swarm Optimizer-AEPSO

S. L. Sabat, L. Ali
{"title":"Accelerated exploration Particle Swarm Optimizer-AEPSO","authors":"S. L. Sabat, L. Ali","doi":"10.1109/TENCON.2008.4766568","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel variant of PSO called accelerated exploration particle swarm optimizer (AEPSO). The AEPSO algorithm select the particles that are far away from the global solution and accelerates them towards global optima with an exploration power to avoid the premature convergence. The performance comparisons such as search efficiency, quality of solution and algorithmic complexity of the proposed algorithm are provided against different high performance PSOs. The comparison is carried out on the set of 30 and 50 dimensional complex multimodal benchmark functions with and without coordinate rotation. Simulation results indicate that the proposed algorithm gives robust results with good quality solution and faster convergence.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":"306 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper introduces a novel variant of PSO called accelerated exploration particle swarm optimizer (AEPSO). The AEPSO algorithm select the particles that are far away from the global solution and accelerates them towards global optima with an exploration power to avoid the premature convergence. The performance comparisons such as search efficiency, quality of solution and algorithmic complexity of the proposed algorithm are provided against different high performance PSOs. The comparison is carried out on the set of 30 and 50 dimensional complex multimodal benchmark functions with and without coordinate rotation. Simulation results indicate that the proposed algorithm gives robust results with good quality solution and faster convergence.
加速探索粒子群优化算法
本文介绍了粒子群优化算法的一种新变体——加速探索粒子群优化算法(AEPSO)。AEPSO算法选取离全局解较远的粒子,以一定的探索能力加速其向全局最优解逼近,避免了算法的过早收敛。针对不同的高性能pso,给出了该算法的搜索效率、解质量和算法复杂度等性能比较。分别对30维和50维复杂多模态基准函数集进行了坐标旋转和不旋转的比较。仿真结果表明,该算法解质量好,收敛速度快,具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信