ACCURACY ANALYSIS OF THE CURVED PROFILE MEASUREMENT WITH CMM: A CASE STUDY

IF 10.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL
T. Mazur, M. Rucki, Yuriy Gutsalenko
{"title":"ACCURACY ANALYSIS OF THE CURVED PROFILE MEASUREMENT WITH CMM: A CASE STUDY","authors":"T. Mazur, M. Rucki, Yuriy Gutsalenko","doi":"10.22190/fume210507063m","DOIUrl":null,"url":null,"abstract":"In the paper, analysis of the curved profile measurement accuracy is described. Since there was no CAD model or other reference profile for the measured detail, the first step was to generate the reference contour of the cam using the technical drawing and tolerance requirements. The test campaign consisted of three experiments aimed at determining the effect of scanning velocity on the results of form deviation δ measurement, evaluation of deviation δ measurement uncertainty and the measurement repeatability. The scanning time was checked, too. The obtained results demonstrated feasibility of the chosen CMM and measurement strategy. It was found also that the measurement uncertainty did not depend on the scanning sampling step from 0.05 to 0.2 mm, and the true measurement time was for 30-40% longer than that expected from the nominal scanning velocity.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22190/fume210507063m","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

In the paper, analysis of the curved profile measurement accuracy is described. Since there was no CAD model or other reference profile for the measured detail, the first step was to generate the reference contour of the cam using the technical drawing and tolerance requirements. The test campaign consisted of three experiments aimed at determining the effect of scanning velocity on the results of form deviation δ measurement, evaluation of deviation δ measurement uncertainty and the measurement repeatability. The scanning time was checked, too. The obtained results demonstrated feasibility of the chosen CMM and measurement strategy. It was found also that the measurement uncertainty did not depend on the scanning sampling step from 0.05 to 0.2 mm, and the true measurement time was for 30-40% longer than that expected from the nominal scanning velocity.
用三坐标测量机测量曲面轮廓的精度分析:以实例为例
本文对曲面轮廓测量精度进行了分析。由于没有CAD模型或测量细节的其他参考轮廓,第一步是使用技术图纸和公差要求生成凸轮的参考轮廓。测试活动包括三个实验,旨在确定扫描速度对形状偏差δ测量结果的影响,评估偏差δ测量不确定度和测量可重复性。也检查了扫描时间。实验结果验证了所选择的三坐标测量机和测量策略的可行性。测量不确定度不依赖于0.05 ~ 0.2 mm的扫描采样步长,实际测量时间比标称扫描速度的预期时间长30 ~ 40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.40
自引率
2.50%
发文量
12
审稿时长
6 weeks
期刊介绍: Facta Universitatis, Series: Mechanical Engineering (FU Mech Eng) is an open-access, peer-reviewed international journal published by the University of Niš in the Republic of Serbia. It publishes high-quality, refereed papers three times a year, encompassing original theoretical and/or practice-oriented research as well as extended versions of previously published conference papers. The journal's scope covers the entire spectrum of Mechanical Engineering. Papers undergo rigorous peer review to ensure originality, relevance, and readability, maintaining high publication standards while offering a timely, comprehensive, and balanced review process.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信