Vortical structures on spherical surfaces

E.O. Ifidon, E.O. Oghre
{"title":"Vortical structures on spherical surfaces","authors":"E.O. Ifidon,&nbsp;E.O. Oghre","doi":"10.1016/j.jnnms.2014.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>A nonlinear elliptic partial differential equation (pde) is obtained as a generalization of the planar Euler equation to the surface of the sphere. A general solution of the pde is found and specific choices corresponding to Stuart vortices are shown to be determined by two parameters <span><math><mi>λ</mi></math></span> and <span><math><mi>N</mi></math></span> which characterizes the solution. For <span><math><mi>λ</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>0</mn></math></span> or <span><math><mi>N</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, the solution is globally valid everywhere on the sphere but corresponds to stream functions that are simply constants. The solution is however non-trivial for all integral values of <span><math><mi>N</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mi>N</mi><mo>≤</mo><mo>−</mo><mn>2</mn></math></span>. In this case, the solution is valid everywhere on the sphere except at the north and south poles where it exhibits point-vortex singularities with equal circulation. The condition for the solutions to satisfy the Gauss constraint is shown to be independent of the value of the parameter <span><math><mi>N</mi></math></span>. Finally, we apply the general methods of Wahlquist and Estabrook to this equation for the determination of (pseudo) potentials. A realization of this algebra would allow the determination of Bäcklund transformations to evolve more general vortex solutions than those presented in this paper.</p></div>","PeriodicalId":17275,"journal":{"name":"Journal of the Nigerian Mathematical Society","volume":"34 2","pages":"Pages 216-226"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jnnms.2014.12.002","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S018989651400016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A nonlinear elliptic partial differential equation (pde) is obtained as a generalization of the planar Euler equation to the surface of the sphere. A general solution of the pde is found and specific choices corresponding to Stuart vortices are shown to be determined by two parameters λ and N which characterizes the solution. For λ=1 and N=0 or N=1, the solution is globally valid everywhere on the sphere but corresponds to stream functions that are simply constants. The solution is however non-trivial for all integral values of N1 and N2. In this case, the solution is valid everywhere on the sphere except at the north and south poles where it exhibits point-vortex singularities with equal circulation. The condition for the solutions to satisfy the Gauss constraint is shown to be independent of the value of the parameter N. Finally, we apply the general methods of Wahlquist and Estabrook to this equation for the determination of (pseudo) potentials. A realization of this algebra would allow the determination of Bäcklund transformations to evolve more general vortex solutions than those presented in this paper.

球面上的螺旋结构
将平面欧拉方程推广到球面,得到了一个非线性椭圆型偏微分方程。得到了该方程的通解,并给出了斯图亚特涡对应的具体选择由表征解的两个参数λ和N决定。对于λ=1和N=0或N= - 1,解在球上的任何地方都是全局有效的,但对应于简单常数的流函数。然而,对于N≥1和N≤- 2的所有积分值,解是非平凡的。在这种情况下,解在球上的任何地方都是有效的,除了在南北两极,它表现出相等循环的点涡奇点。证明了解满足高斯约束的条件与参数n的取值无关。最后,我们将Wahlquist和Estabrook的一般方法应用于该方程来确定(伪)势。这种代数的实现将允许Bäcklund变换的确定,以演变出比本文中提出的更一般的涡解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信