A natural fibration for rings

A. Bosi, A. Facchini
{"title":"A natural fibration for rings","authors":"A. Bosi, A. Facchini","doi":"10.4171/RSMUP/76","DOIUrl":null,"url":null,"abstract":"A ringed partially ordered set with zero is a pair (L,F ), where L is a partially ordered set with a least element 0L and F : L → Ring is a covariant functor. Here the partially ordered set L is given a category structure in the usual way and Ring denotes the category of associative rings with identity. Let RingedParOrd0 be the category of ringed partially ordered sets with zero. There is a functor H : Ring → RingedParOrd0 that associates to any ring R a ringed partially ordered set with zero (Hom(R), FR). The functor H has a left inverse Z : RingedParOrd0 → Ring. The category RingedParOrd0 is a fibred category. Mathematics Subject Classification (2010). Primary 18D30.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"154 1","pages":"167-180"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/RSMUP/76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A ringed partially ordered set with zero is a pair (L,F ), where L is a partially ordered set with a least element 0L and F : L → Ring is a covariant functor. Here the partially ordered set L is given a category structure in the usual way and Ring denotes the category of associative rings with identity. Let RingedParOrd0 be the category of ringed partially ordered sets with zero. There is a functor H : Ring → RingedParOrd0 that associates to any ring R a ringed partially ordered set with zero (Hom(R), FR). The functor H has a left inverse Z : RingedParOrd0 → Ring. The category RingedParOrd0 is a fibred category. Mathematics Subject Classification (2010). Primary 18D30.
环的自然颤动
带零的环偏序集合是一对(L,F),其中L是最小元素为0L的偏序集合,且F: L→Ring是协变函子。这里给出偏序集L通常的一个范畴结构,Ring表示具有恒等的结合环的范畴。设RingedParOrd0为零环偏序集合的范畴。存在一个函子H: Ring→RingedParOrd0,它将一个零的环偏序集(hm (R), FR)关联到任何环R上。函子H有一个左逆Z: ringedparor0→Ring。类别RingedParOrd0是一个纤维类别。数学学科分类(2010)。主要18 d30。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信