{"title":"Exact asymptotics of the stochastic wave equation with time-independent noise","authors":"R. Balan, Le Chen, Xia Chen","doi":"10.1214/21-aihp1207","DOIUrl":null,"url":null,"abstract":"In this article, we study the stochastic wave equation in all dimensions $d\\leq 3$, driven by a Gaussian noise $\\dot{W}$ which does not depend on time. We assume that either the noise is white, or the covariance function of the noise satisfies a scaling property similar to the Riesz kernel. The solution is interpreted in the Skorohod sense using Malliavin calculus. We obtain the exact asymptotic behaviour of the $p$-th moment of the solution either when the time is large or when $p$ is large. For the critical case, that is the case when $d=3$ and the noise is white, we obtain the exact transition time for the second moment to be finite.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 8
Abstract
In this article, we study the stochastic wave equation in all dimensions $d\leq 3$, driven by a Gaussian noise $\dot{W}$ which does not depend on time. We assume that either the noise is white, or the covariance function of the noise satisfies a scaling property similar to the Riesz kernel. The solution is interpreted in the Skorohod sense using Malliavin calculus. We obtain the exact asymptotic behaviour of the $p$-th moment of the solution either when the time is large or when $p$ is large. For the critical case, that is the case when $d=3$ and the noise is white, we obtain the exact transition time for the second moment to be finite.