Exact asymptotics of the stochastic wave equation with time-independent noise

IF 1.5 Q2 PHYSICS, MATHEMATICAL
R. Balan, Le Chen, Xia Chen
{"title":"Exact asymptotics of the stochastic wave equation with time-independent noise","authors":"R. Balan, Le Chen, Xia Chen","doi":"10.1214/21-aihp1207","DOIUrl":null,"url":null,"abstract":"In this article, we study the stochastic wave equation in all dimensions $d\\leq 3$, driven by a Gaussian noise $\\dot{W}$ which does not depend on time. We assume that either the noise is white, or the covariance function of the noise satisfies a scaling property similar to the Riesz kernel. The solution is interpreted in the Skorohod sense using Malliavin calculus. We obtain the exact asymptotic behaviour of the $p$-th moment of the solution either when the time is large or when $p$ is large. For the critical case, that is the case when $d=3$ and the noise is white, we obtain the exact transition time for the second moment to be finite.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 8

Abstract

In this article, we study the stochastic wave equation in all dimensions $d\leq 3$, driven by a Gaussian noise $\dot{W}$ which does not depend on time. We assume that either the noise is white, or the covariance function of the noise satisfies a scaling property similar to the Riesz kernel. The solution is interpreted in the Skorohod sense using Malliavin calculus. We obtain the exact asymptotic behaviour of the $p$-th moment of the solution either when the time is large or when $p$ is large. For the critical case, that is the case when $d=3$ and the noise is white, we obtain the exact transition time for the second moment to be finite.
具有时无关噪声的随机波动方程的精确渐近性
在本文中,我们研究了随机波动方程在所有维度$d\leq 3$,由高斯噪声$\dot{W}$驱动,它不依赖于时间。我们假设噪声是白色的,或者噪声的协方差函数满足类似Riesz核的缩放性质。这个解是用Malliavin演算在Skorohod意义上解释的。当时间较大或$p$较大时,我们得到了解的$p$ -th矩的确切渐近行为。对于临界情况,即$d=3$和噪声为白色的情况,我们得到第二时刻的确切过渡时间是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信