Intelligent Questionnaires Using Approximate Dynamic Programming

Q1 Social Sciences
i-com Pub Date : 2020-12-01 DOI:10.1515/icom-2020-0022
Frédéric Logé, E. Le Pennec, H. Amadou-Boubacar
{"title":"Intelligent Questionnaires Using Approximate Dynamic Programming","authors":"Frédéric Logé, E. Le Pennec, H. Amadou-Boubacar","doi":"10.1515/icom-2020-0022","DOIUrl":null,"url":null,"abstract":"Abstract Inefficient interaction such as long and/or repetitive questionnaires can be detrimental to user experience, which leads us to investigate the computation of an intelligent questionnaire for a prediction task. Given time and budget constraints (maximum q questions asked), this questionnaire will select adaptively the question sequence based on answers already given. Several use-cases with increased user and customer experience are given. The problem is framed as a Markov Decision Process and solved numerically with approximate dynamic programming, exploiting the hierarchical and episodic structure of the problem. The approach, evaluated on toy models and classic supervised learning datasets, outperforms two baselines: a decision tree with budget constraint and a model with q best features systematically asked. The online problem, quite critical for deployment seems to pose no particular issue, under the right exploration strategy. This setting is quite flexible and can incorporate easily initial available data and grouped questions.","PeriodicalId":37105,"journal":{"name":"i-com","volume":"12 1","pages":"227 - 237"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-com","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/icom-2020-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Inefficient interaction such as long and/or repetitive questionnaires can be detrimental to user experience, which leads us to investigate the computation of an intelligent questionnaire for a prediction task. Given time and budget constraints (maximum q questions asked), this questionnaire will select adaptively the question sequence based on answers already given. Several use-cases with increased user and customer experience are given. The problem is framed as a Markov Decision Process and solved numerically with approximate dynamic programming, exploiting the hierarchical and episodic structure of the problem. The approach, evaluated on toy models and classic supervised learning datasets, outperforms two baselines: a decision tree with budget constraint and a model with q best features systematically asked. The online problem, quite critical for deployment seems to pose no particular issue, under the right exploration strategy. This setting is quite flexible and can incorporate easily initial available data and grouped questions.
使用近似动态规划的智能问卷
低效率的交互,如冗长和/或重复的问卷,可能会损害用户体验,这导致我们研究智能问卷的计算预测任务。给定时间和预算限制(最多问q个问题),该问卷将根据已经给出的答案自适应地选择问题顺序。给出了几个增加用户和客户体验的用例。该问题被构建为一个马尔可夫决策过程,并利用问题的分层和情景结构,用近似动态规划进行数值求解。该方法在玩具模型和经典监督学习数据集上进行了评估,优于两个基线:具有预算约束的决策树和具有q个最佳特征的模型。在正确的勘探策略下,对部署至关重要的在线问题似乎没有什么特别的问题。这种设置非常灵活,可以很容易地合并初始可用数据和分组问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
i-com
i-com Social Sciences-Communication
CiteScore
3.80
自引率
0.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信