Entropy Based Segmentation Model for Kidney Stone and Cyst on Ultrasound Image

Q3 Computer Science
Mino George, Anita Hadadi Bhimasena
{"title":"Entropy Based Segmentation Model for Kidney Stone and Cyst on Ultrasound Image","authors":"Mino George, Anita Hadadi Bhimasena","doi":"10.47839/ijc.21.4.2780","DOIUrl":null,"url":null,"abstract":"Segmentation of abnormal masses in kidney images is a tough task. One of the main challenges is the presence of speckle noise, which will restrain the valuable information for the medical practitioners. Hence, the detection and segmentation of the affected regions vary in accuracies. The proposed model includes pre-processing and segmentation of the diseased region. The pre-processing consists of Gaussian filtering and Contrast Limited Adaptive Histogram Equalization (CLHE) to improve the clarity of the images. Further, segmentation has been done based on the entropy of the image and gamma correction has been done to improve the overall brightness of the images. An optimal global threshold value is selected to extract the region of interest and measures the area. The model is analyzed with statistical parameters like Jaccard index and Dice coefficient and compared with the ground truth images. To check the accuracy of the segmentation, relative error is calculated. This framework can be used by radiologists in diagnosing kidney patients","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.21.4.2780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Segmentation of abnormal masses in kidney images is a tough task. One of the main challenges is the presence of speckle noise, which will restrain the valuable information for the medical practitioners. Hence, the detection and segmentation of the affected regions vary in accuracies. The proposed model includes pre-processing and segmentation of the diseased region. The pre-processing consists of Gaussian filtering and Contrast Limited Adaptive Histogram Equalization (CLHE) to improve the clarity of the images. Further, segmentation has been done based on the entropy of the image and gamma correction has been done to improve the overall brightness of the images. An optimal global threshold value is selected to extract the region of interest and measures the area. The model is analyzed with statistical parameters like Jaccard index and Dice coefficient and compared with the ground truth images. To check the accuracy of the segmentation, relative error is calculated. This framework can be used by radiologists in diagnosing kidney patients
基于熵的超声图像肾结石和囊肿分割模型
肾脏图像中异常肿块的分割是一项艰巨的任务。其中一个主要的挑战是斑点噪声的存在,这将限制对医疗从业者有价值的信息。因此,受影响区域的检测和分割精度各不相同。该模型包括病变区域的预处理和分割。预处理包括高斯滤波和对比度有限自适应直方图均衡化(CLHE),以提高图像的清晰度。进一步,根据图像的熵值进行分割,并进行伽玛校正,提高图像的整体亮度。选择一个最优的全局阈值提取感兴趣的区域并测量该区域。利用Jaccard指数和Dice系数等统计参数对模型进行分析,并与地面真实图像进行比较。为了检验分割的准确性,计算了相对误差。这个框架可以被放射科医生用于诊断肾病患者
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computing
International Journal of Computing Computer Science-Computer Science (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
39
期刊介绍: The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信