Decomposing images into layers via RGB-space geometry

Jianchao Tan, Jyh-Ming Lien, Y. Gingold
{"title":"Decomposing images into layers via RGB-space geometry","authors":"Jianchao Tan, Jyh-Ming Lien, Y. Gingold","doi":"10.1145/3072959.3126798","DOIUrl":null,"url":null,"abstract":"In digital image editing software, layers organize images. However, layers are often not explicitly represented in the final image, and may never have existed for a scanned physical painting or a photograph. We propose a technique to decompose an image into layers. In our decomposition, each layer represents a single-color coat of paint applied with varying opacity. Our decomposition is based on the image’s RGB-space geometry. In RGB-space, the linear nature of the standard Porter-Duff [1984] “over” pixel compositing operation implies a geometric structure. The vertices of the convex hull of image pixels in RGB-space correspond to a palette of paint colors. These colors may be “hidden” and inaccessible to algorithms based on clustering visible colors. For our layer decomposition, users choose the palette size (degree of simplification to perform on the convex hull), as well as a layer order for the paint colors (vertices). We then solve a constrained optimization problem to find translucent, spatially coherent opacity for each layer, such that the composition of the layers reproduces the original image. We demonstrate the utility of the resulting decompositions for recoloring (global and local) and object insertion. Our layers can be interpreted as generalized barycentric coordinates; we compare to these and other recoloring approaches.","PeriodicalId":7121,"journal":{"name":"ACM Trans. Graph.","volume":"114 1","pages":"7:1-7:14"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3072959.3126798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

In digital image editing software, layers organize images. However, layers are often not explicitly represented in the final image, and may never have existed for a scanned physical painting or a photograph. We propose a technique to decompose an image into layers. In our decomposition, each layer represents a single-color coat of paint applied with varying opacity. Our decomposition is based on the image’s RGB-space geometry. In RGB-space, the linear nature of the standard Porter-Duff [1984] “over” pixel compositing operation implies a geometric structure. The vertices of the convex hull of image pixels in RGB-space correspond to a palette of paint colors. These colors may be “hidden” and inaccessible to algorithms based on clustering visible colors. For our layer decomposition, users choose the palette size (degree of simplification to perform on the convex hull), as well as a layer order for the paint colors (vertices). We then solve a constrained optimization problem to find translucent, spatially coherent opacity for each layer, such that the composition of the layers reproduces the original image. We demonstrate the utility of the resulting decompositions for recoloring (global and local) and object insertion. Our layers can be interpreted as generalized barycentric coordinates; we compare to these and other recoloring approaches.
通过rgb空间几何将图像分解成层
在数字图像编辑软件中,图层组织图像。然而,图层通常不会在最终图像中明确表示,并且可能永远不会存在于扫描的物理绘画或照片中。我们提出了一种将图像分解成层的技术。在我们的分解中,每一层都代表一种不同透明度的单色涂料。我们的分解是基于图像的rgb空间几何。在rgb空间中,标准Porter-Duff[1984]“超”像素合成操作的线性性质意味着几何结构。rgb空间中图像像素的凸包的顶点对应于油漆颜色的调色板。这些颜色可能是“隐藏的”,对于基于聚类可见颜色的算法来说是无法访问的。对于我们的层分解,用户选择调色板大小(在凸包上执行的简化程度),以及油漆颜色的层顺序(顶点)。然后,我们解决了一个约束优化问题,为每一层找到半透明的、空间上连贯的不透明度,这样层的组成就能再现原始图像。我们演示了结果分解在重新着色(全局和局部)和对象插入方面的效用。我们的层可以解释为广义质心坐标;我们比较这些和其他重新上色的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信