Impact of DFT Based Speckle Reduction Filter on Classification Accuracy of Synthetic Aperture Radar Images

V. Jain, S. Shitole, V. Turkar, A. Das
{"title":"Impact of DFT Based Speckle Reduction Filter on Classification Accuracy of Synthetic Aperture Radar Images","authors":"V. Jain, S. Shitole, V. Turkar, A. Das","doi":"10.1109/InGARSS48198.2020.9358943","DOIUrl":null,"url":null,"abstract":"Speckle in SAR images makes it difficult to interpret the image thus reducing the effectiveness of image processing. In remote sensing, image scene classification is an elementary problem which aims to label an image automatically with a specific semantic category. The classification performance of SAR data with speckle is inadequate for many applications. Thus, speckle removal becomes an important pre-processing step for SAR data classification. This study investigates the impact and importance of speckle filtering for classification using ALOS-PALSAR-2 data on San Fran-cisco area. Wishart classifier is chosen for classification of filtered and unfiltered SAR data. The influence of DFT based speckle reduction framework is investigated in terms of classification accuracy.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"10 1","pages":"54-57"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Speckle in SAR images makes it difficult to interpret the image thus reducing the effectiveness of image processing. In remote sensing, image scene classification is an elementary problem which aims to label an image automatically with a specific semantic category. The classification performance of SAR data with speckle is inadequate for many applications. Thus, speckle removal becomes an important pre-processing step for SAR data classification. This study investigates the impact and importance of speckle filtering for classification using ALOS-PALSAR-2 data on San Fran-cisco area. Wishart classifier is chosen for classification of filtered and unfiltered SAR data. The influence of DFT based speckle reduction framework is investigated in terms of classification accuracy.
基于DFT的散斑抑制滤波器对合成孔径雷达图像分类精度的影响
SAR图像中的斑点给图像解译带来困难,从而降低了图像处理的有效性。在遥感中,图像场景分类是一个基本问题,其目的是用特定的语义类别自动标记图像。带有散斑的SAR数据的分类性能在许多应用中是不够的。因此,去斑成为SAR数据分类的重要预处理步骤。本文利用美国旧金山地区的ALOS-PALSAR-2数据,研究了散斑滤波对分类的影响和重要性。采用Wishart分类器对过滤后和未过滤的SAR数据进行分类。从分类精度的角度研究了基于DFT的散斑约简框架对分类精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信