Passive Acoustic Transducer as a Fluid Flow Sensor

S. K. E. Yang, M. Kiziroglou, E. Yeatman, A. Holmes
{"title":"Passive Acoustic Transducer as a Fluid Flow Sensor","authors":"S. K. E. Yang, M. Kiziroglou, E. Yeatman, A. Holmes","doi":"10.1109/SENSORS47087.2021.9639728","DOIUrl":null,"url":null,"abstract":"Autonomy and minimal disruption are key desirable features for sensors to be deployed in medical, industrial, vehicle and infrastructure monitoring systems. Using a passive structure to transduce the quantity of interest into an acoustic or electromagnetic wave could offer an attractive solution for remote sensing, lifting the requirements of installing active materials, electronics, and power sources in remote, inaccessible, sensitive, or harsh environment locations. Here, we report a simple cavity and ball structure that transduces fluid flow through a pipe into an acoustic signal. A microphone on the outside wall of the pipe records the intensity and arrival rate of the sound pulses generated by collisions between the ball and the cavity walls. Using this approach external measurement of flow is demonstrated with adequate repeatability before any acoustic signal processing. This result is expected to open the way to the implementation of passive, remotely readable sensors for fluid flow and other fluid properties of interest.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"224 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Autonomy and minimal disruption are key desirable features for sensors to be deployed in medical, industrial, vehicle and infrastructure monitoring systems. Using a passive structure to transduce the quantity of interest into an acoustic or electromagnetic wave could offer an attractive solution for remote sensing, lifting the requirements of installing active materials, electronics, and power sources in remote, inaccessible, sensitive, or harsh environment locations. Here, we report a simple cavity and ball structure that transduces fluid flow through a pipe into an acoustic signal. A microphone on the outside wall of the pipe records the intensity and arrival rate of the sound pulses generated by collisions between the ball and the cavity walls. Using this approach external measurement of flow is demonstrated with adequate repeatability before any acoustic signal processing. This result is expected to open the way to the implementation of passive, remotely readable sensors for fluid flow and other fluid properties of interest.
被动声换能器作为流体流量传感器
自主和最小干扰是传感器在医疗、工业、车辆和基础设施监控系统中部署的关键特性。使用被动结构将感兴趣的量转换为声波或电磁波可以为遥感提供有吸引力的解决方案,从而提高了在偏远,难以接近,敏感或恶劣环境位置安装有源材料,电子设备和电源的要求。在这里,我们报告了一个简单的腔和球结构,它将流体流过管道转化为声信号。管道外壁上的麦克风记录了球与腔壁碰撞产生的声脉冲的强度和到达率。在任何声学信号处理之前,使用这种方法证明外部流量测量具有足够的可重复性。这一结果有望为实现无源、远程可读的流体流动和其他感兴趣的流体特性传感器开辟道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信