A Robust Delayed Resonator Construction using Amplifying Mechanism

IF 1.9 4区 工程技术 Q2 ACOUSTICS
Yifan Liu, Jiazhi Cai, N. Olgaç, Qingbin Gao
{"title":"A Robust Delayed Resonator Construction using Amplifying Mechanism","authors":"Yifan Liu, Jiazhi Cai, N. Olgaç, Qingbin Gao","doi":"10.1115/1.4055559","DOIUrl":null,"url":null,"abstract":"\n The delayed resonator (DR) is an active vibration absorber, which yields ideal vibration suppression at its resonance frequency. In this study, we further complement the DR design in a distinctive mechanical path by introducing an amplifying mechanism (AM), so the creation of DRA. Very different from the existing works that focus more on how to enhance the ideal vibration suppression of the DR, we are interested in how the DR behaves under uncertainties and how can the newly proposed DRA abate the arising negative effects. First, we study the effects of such uncertainties in detecting the excitation frequency on the quality of vibration suppression, working space of the absorber, and energy cost. Then, we discuss how the control parameter perturbation affects the system stability. A comparative study between the classic DR and the proposed DRA is presented throughout the text, showing that the enhanced performance and robustness characteristics enabled by the AM are almost all-around while posing no additional controller complexity. We also show using spectral analysis that the AM can also enhance the transient behavior of the system. Finally, three numerical simulations included as core studies vividly exhibit DRA’s practical strength.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"58 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055559","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 6

Abstract

The delayed resonator (DR) is an active vibration absorber, which yields ideal vibration suppression at its resonance frequency. In this study, we further complement the DR design in a distinctive mechanical path by introducing an amplifying mechanism (AM), so the creation of DRA. Very different from the existing works that focus more on how to enhance the ideal vibration suppression of the DR, we are interested in how the DR behaves under uncertainties and how can the newly proposed DRA abate the arising negative effects. First, we study the effects of such uncertainties in detecting the excitation frequency on the quality of vibration suppression, working space of the absorber, and energy cost. Then, we discuss how the control parameter perturbation affects the system stability. A comparative study between the classic DR and the proposed DRA is presented throughout the text, showing that the enhanced performance and robustness characteristics enabled by the AM are almost all-around while posing no additional controller complexity. We also show using spectral analysis that the AM can also enhance the transient behavior of the system. Finally, three numerical simulations included as core studies vividly exhibit DRA’s practical strength.
基于放大机制的鲁棒延迟谐振器结构
延迟谐振器(DR)是一种主动吸振器,在其谐振频率处具有理想的抑振效果。在本研究中,我们通过引入放大机制(AM)来进一步补充DR设计中的独特机械路径,从而创建DRA。与以往的研究不同,我们更关注的是如何增强阻尼器的理想振动抑制,而我们感兴趣的是阻尼器在不确定性下的行为以及新提出的阻尼器如何减轻产生的负面影响。首先,我们研究了激励频率检测中的不确定性对减振质量、吸振器工作空间和能量成本的影响。然后讨论了控制参数摄动对系统稳定性的影响。本文对经典DR和提出的DRA进行了比较研究,结果表明,AM所带来的性能和鲁棒性的增强几乎是全方位的,同时不会带来额外的控制器复杂性。我们还利用光谱分析表明,AM也可以增强系统的瞬态行为。最后,作为核心研究的三个数值模拟生动地展示了DRA的实用实力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信