{"title":"A Robust Delayed Resonator Construction using Amplifying Mechanism","authors":"Yifan Liu, Jiazhi Cai, N. Olgaç, Qingbin Gao","doi":"10.1115/1.4055559","DOIUrl":null,"url":null,"abstract":"\n The delayed resonator (DR) is an active vibration absorber, which yields ideal vibration suppression at its resonance frequency. In this study, we further complement the DR design in a distinctive mechanical path by introducing an amplifying mechanism (AM), so the creation of DRA. Very different from the existing works that focus more on how to enhance the ideal vibration suppression of the DR, we are interested in how the DR behaves under uncertainties and how can the newly proposed DRA abate the arising negative effects. First, we study the effects of such uncertainties in detecting the excitation frequency on the quality of vibration suppression, working space of the absorber, and energy cost. Then, we discuss how the control parameter perturbation affects the system stability. A comparative study between the classic DR and the proposed DRA is presented throughout the text, showing that the enhanced performance and robustness characteristics enabled by the AM are almost all-around while posing no additional controller complexity. We also show using spectral analysis that the AM can also enhance the transient behavior of the system. Finally, three numerical simulations included as core studies vividly exhibit DRA’s practical strength.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"58 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055559","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 6
Abstract
The delayed resonator (DR) is an active vibration absorber, which yields ideal vibration suppression at its resonance frequency. In this study, we further complement the DR design in a distinctive mechanical path by introducing an amplifying mechanism (AM), so the creation of DRA. Very different from the existing works that focus more on how to enhance the ideal vibration suppression of the DR, we are interested in how the DR behaves under uncertainties and how can the newly proposed DRA abate the arising negative effects. First, we study the effects of such uncertainties in detecting the excitation frequency on the quality of vibration suppression, working space of the absorber, and energy cost. Then, we discuss how the control parameter perturbation affects the system stability. A comparative study between the classic DR and the proposed DRA is presented throughout the text, showing that the enhanced performance and robustness characteristics enabled by the AM are almost all-around while posing no additional controller complexity. We also show using spectral analysis that the AM can also enhance the transient behavior of the system. Finally, three numerical simulations included as core studies vividly exhibit DRA’s practical strength.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.