Learning to Predict Gaze in Egocentric Video

Yin Li, A. Fathi, James M. Rehg
{"title":"Learning to Predict Gaze in Egocentric Video","authors":"Yin Li, A. Fathi, James M. Rehg","doi":"10.1109/ICCV.2013.399","DOIUrl":null,"url":null,"abstract":"We present a model for gaze prediction in egocentric video by leveraging the implicit cues that exist in camera wearer's behaviors. Specifically, we compute the camera wearer's head motion and hand location from the video and combine them to estimate where the eyes look. We further model the dynamic behavior of the gaze, in particular fixations, as latent variables to improve the gaze prediction. Our gaze prediction results outperform the state-of-the-art algorithms by a large margin on publicly available egocentric vision datasets. In addition, we demonstrate that we get a significant performance boost in recognizing daily actions and segmenting foreground objects by plugging in our gaze predictions into state-of-the-art methods.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"27 1","pages":"3216-3223"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"240","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 240

Abstract

We present a model for gaze prediction in egocentric video by leveraging the implicit cues that exist in camera wearer's behaviors. Specifically, we compute the camera wearer's head motion and hand location from the video and combine them to estimate where the eyes look. We further model the dynamic behavior of the gaze, in particular fixations, as latent variables to improve the gaze prediction. Our gaze prediction results outperform the state-of-the-art algorithms by a large margin on publicly available egocentric vision datasets. In addition, we demonstrate that we get a significant performance boost in recognizing daily actions and segmenting foreground objects by plugging in our gaze predictions into state-of-the-art methods.
学习在自我中心视频中预测凝视
我们提出了一个以自我为中心的视频的凝视预测模型,该模型利用了相机佩戴者行为中存在的隐含线索。具体来说,我们从视频中计算相机佩戴者的头部运动和手的位置,并将它们结合起来估计眼睛在看哪里。我们进一步将凝视的动态行为建模,特别是注视,作为潜在变量来改进凝视预测。我们的凝视预测结果在公开可用的以自我为中心的视觉数据集上大大优于最先进的算法。此外,我们证明,通过将我们的凝视预测插入到最先进的方法中,我们在识别日常动作和分割前景对象方面获得了显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信