ADHD subgroup discrimination with global connectivity features using hierarchical extreme learning machine: Resting-state FMRI study

Muhammad Naveed Iqbal Qureshi, H. Jo, Boreom Lee
{"title":"ADHD subgroup discrimination with global connectivity features using hierarchical extreme learning machine: Resting-state FMRI study","authors":"Muhammad Naveed Iqbal Qureshi, H. Jo, Boreom Lee","doi":"10.1109/ISBI.2017.7950576","DOIUrl":null,"url":null,"abstract":"The differential diagnosis among ADHD subtypes is an important research area for the neuroimaging community. We pursue this goal by using machine learning techniques in this study. Selective subjects matched by age and handedness information from publicly available ADHD-200 dataset were used in this study. In addition, this work is based only on the resting-state fMRI images. We calculated the global connectivity maps from the fMRI images and used the average of the connectivity measure of each atlas-based cortical parcellation as a feature for the classifier input. For the classification, we used hierarchical extreme learning machine (H-ELM) classifier. By using the proposed feature extraction method, we achieved a 71.11% (p < 0.0090) nested cross-validated accuracy and a kappa score of 0.57 in multiclass classification settings.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"36 1","pages":"529-532"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The differential diagnosis among ADHD subtypes is an important research area for the neuroimaging community. We pursue this goal by using machine learning techniques in this study. Selective subjects matched by age and handedness information from publicly available ADHD-200 dataset were used in this study. In addition, this work is based only on the resting-state fMRI images. We calculated the global connectivity maps from the fMRI images and used the average of the connectivity measure of each atlas-based cortical parcellation as a feature for the classifier input. For the classification, we used hierarchical extreme learning machine (H-ELM) classifier. By using the proposed feature extraction method, we achieved a 71.11% (p < 0.0090) nested cross-validated accuracy and a kappa score of 0.57 in multiclass classification settings.
使用层次极限学习机的ADHD亚组识别与全局连通性特征:静息状态FMRI研究
ADHD亚型的鉴别诊断是神经影像学领域的一个重要研究领域。在这项研究中,我们通过使用机器学习技术来实现这一目标。本研究使用了来自公开的ADHD-200数据集的年龄和惯用手信息匹配的选择性受试者。此外,这项工作仅基于静息状态的fMRI图像。我们计算了fMRI图像的全局连通性图,并使用每个基于地图集的皮质分割的连通性度量的平均值作为分类器输入的特征。对于分类,我们使用了层次极限学习机(H-ELM)分类器。通过使用所提出的特征提取方法,我们在多类分类设置中获得了71.11% (p < 0.0090)的嵌套交叉验证准确率和0.57的kappa评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信