An algebraic approach to the spontaneous formation of spherical jets

IF 1 Q3 Engineering
M. Viviani
{"title":"An algebraic approach to the spontaneous formation of spherical jets","authors":"M. Viviani","doi":"10.3934/jcd.2021028","DOIUrl":null,"url":null,"abstract":"The global structure of the atmosphere and the oceans is a continuous source of intriguing challenges in geophysical fluid dynamics (GFD). Among these, jets are determinant in the air and water circulation around the Earth. In the last fifty years, thanks to the development of more and more precise and extensive observations, it has been possible to study in detail the atmospheric formations of the giant-gas planets in the solar system. For those planets, jets are the dominant large scale structure. Starting from the 70s, various theories combining observations and mathematical models have been proposed in order to describe their formation and stability. In this paper, we propose a purely algebraic approach to describe the spontaneous formation of jets on a spherical domain. Analysing the algebraic properties of the 2D Euler equations, we give a characterization of the different jets' structures. The calculations are performed starting from the discrete Zeitlin model of the Euler equations. For this model, the classification of the jets' structures can be precisely described in terms of reductive Lie algebras decomposition. The discrete framework provides a simple tool for analysing both from a theoretical and and a numerical perspective the jets' formation. Furthermore, it allows to extend the results to the original Euler equations.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"129 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2021028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The global structure of the atmosphere and the oceans is a continuous source of intriguing challenges in geophysical fluid dynamics (GFD). Among these, jets are determinant in the air and water circulation around the Earth. In the last fifty years, thanks to the development of more and more precise and extensive observations, it has been possible to study in detail the atmospheric formations of the giant-gas planets in the solar system. For those planets, jets are the dominant large scale structure. Starting from the 70s, various theories combining observations and mathematical models have been proposed in order to describe their formation and stability. In this paper, we propose a purely algebraic approach to describe the spontaneous formation of jets on a spherical domain. Analysing the algebraic properties of the 2D Euler equations, we give a characterization of the different jets' structures. The calculations are performed starting from the discrete Zeitlin model of the Euler equations. For this model, the classification of the jets' structures can be precisely described in terms of reductive Lie algebras decomposition. The discrete framework provides a simple tool for analysing both from a theoretical and and a numerical perspective the jets' formation. Furthermore, it allows to extend the results to the original Euler equations.
球形射流自发形成的代数方法
大气和海洋的全球结构是地球物理流体动力学(GFD)中一个有趣挑战的持续来源。其中,射流在地球周围的空气和水循环中起着决定性作用。在过去的五十年里,由于越来越精确和广泛的观测的发展,已经有可能详细研究太阳系中巨大气体行星的大气形成。对于这些行星来说,喷流是主要的大规模结构。从70年代开始,人们提出了各种结合观测和数学模型的理论来描述它们的形成和稳定性。本文提出了一种纯代数方法来描述球面上射流的自发形成。通过分析二维欧拉方程的代数性质,给出了不同射流结构的表征。从欧拉方程的离散Zeitlin模型出发进行计算。对于该模型,射流结构的分类可以用约化李代数分解来精确描述。离散框架为从理论和数值角度分析射流的形成提供了一个简单的工具。此外,它允许将结果扩展到原始欧拉方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Dynamics
Journal of Computational Dynamics Engineering-Computational Mechanics
CiteScore
2.30
自引率
10.00%
发文量
31
期刊介绍: JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信