Evaluation of Lattice Defect Density in Deformed Ti by Precise Measurement of Electrical Resistivity

M. Ueda, Keiichi Ota, M. Ikeda
{"title":"Evaluation of Lattice Defect Density in Deformed Ti by Precise Measurement of Electrical Resistivity","authors":"M. Ueda, Keiichi Ota, M. Ikeda","doi":"10.4144/RPSJ.60.18","DOIUrl":null,"url":null,"abstract":"Several metallic materials have been developed for many purposes by alloying and controlling microstructure. From the viewpoint of materials recycling, several properties should be controlled by the latter in simple alloys. Then, observation and evaluation of lattice defects such as vacancy, dislocation and grain boundary are very important for understanding microstructure development during thermo-mechanical treatments. The purpose of this study was to establish a method for esti-mating density of lattice defects in cold rolled and annealed Ti by a precise measurement of electrical resistivity. Pure Ti plates were cold rolled at room temperature. Bar shaped specimens were cut from the plates. Electrical resistivities at 77 K (liquid nitrogen) and 300 K were measured by a direct current four-point method with a constant current of 100 mA. The accuracy of temperature control at 300 K was 0.1 K in silicone oil. Basically the electrical resistivities gradually increased with increasing a reduction of thickness. The density of dislocation was determined to be 2–8 × 10 14 m − 2 in the 15–80% CR specimens","PeriodicalId":20971,"journal":{"name":"Resources Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4144/RPSJ.60.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Several metallic materials have been developed for many purposes by alloying and controlling microstructure. From the viewpoint of materials recycling, several properties should be controlled by the latter in simple alloys. Then, observation and evaluation of lattice defects such as vacancy, dislocation and grain boundary are very important for understanding microstructure development during thermo-mechanical treatments. The purpose of this study was to establish a method for esti-mating density of lattice defects in cold rolled and annealed Ti by a precise measurement of electrical resistivity. Pure Ti plates were cold rolled at room temperature. Bar shaped specimens were cut from the plates. Electrical resistivities at 77 K (liquid nitrogen) and 300 K were measured by a direct current four-point method with a constant current of 100 mA. The accuracy of temperature control at 300 K was 0.1 K in silicone oil. Basically the electrical resistivities gradually increased with increasing a reduction of thickness. The density of dislocation was determined to be 2–8 × 10 14 m − 2 in the 15–80% CR specimens
用电阻率精确测量评价变形钛晶格缺陷密度
通过合金化和控制微观结构,已经开发出多种用途的金属材料。从材料回收的角度来看,简单合金的一些性能应由后者控制。因此,观察和评价空位、位错和晶界等晶格缺陷对于理解热处理过程中微观组织的发展是非常重要的。本研究的目的是建立一种通过精确测量电阻率来估计冷轧和退火钛晶格缺陷密度的方法。在室温下对纯钛板进行冷轧。从板上剪下条形标本。采用直流四点法测量77 K(液氮)和300 K时的电阻率,恒流为100 mA。在硅油中,300 K温度控制精度为0.1 K。基本上,电阻率随着厚度的增加而逐渐增加。在CR含量为15-80%的试样中,位错密度为2 - 8 × 10 14 m−2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信