Robust level-3 BLAS Inverse Iteration from the Hessenberg Matrix

A. Schwarz
{"title":"Robust level-3 BLAS Inverse Iteration from the Hessenberg Matrix","authors":"A. Schwarz","doi":"10.1145/3544789","DOIUrl":null,"url":null,"abstract":"Inverse iteration is known to be an effective method for computing eigenvectors corresponding to simple and well-separated eigenvalues. In the non-symmetric case, the solution of shifted Hessenberg systems is a central step. Existing inverse iteration solvers approach the solution of the shifted Hessenberg systems with either RQ or LU factorizations and, once factored, solve the corresponding systems. This approach has limited level-3 BLAS potential since distinct shifts have distinct factorizations. This paper rearranges the RQ approach such that data shared between distinct shifts can be exploited. Thereby the backward substitution with the triangular R factor can be expressed mostly with matrix–matrix multiplications (level-3 BLAS). The resulting algorithm computes eigenvectors in a tiled, overflow-free, and task-parallel fashion. The numerical experiments show that the new algorithm outperforms existing inverse iteration solvers for the computation of both real and complex eigenvectors.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"121 1","pages":"1 - 30"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inverse iteration is known to be an effective method for computing eigenvectors corresponding to simple and well-separated eigenvalues. In the non-symmetric case, the solution of shifted Hessenberg systems is a central step. Existing inverse iteration solvers approach the solution of the shifted Hessenberg systems with either RQ or LU factorizations and, once factored, solve the corresponding systems. This approach has limited level-3 BLAS potential since distinct shifts have distinct factorizations. This paper rearranges the RQ approach such that data shared between distinct shifts can be exploited. Thereby the backward substitution with the triangular R factor can be expressed mostly with matrix–matrix multiplications (level-3 BLAS). The resulting algorithm computes eigenvectors in a tiled, overflow-free, and task-parallel fashion. The numerical experiments show that the new algorithm outperforms existing inverse iteration solvers for the computation of both real and complex eigenvectors.
基于Hessenberg矩阵的鲁棒3级BLAS逆迭代
逆迭代是计算简单且分离良好的特征值所对应的特征向量的有效方法。在非对称情况下,位移海森伯格系统的解是中心步骤。现有的逆迭代求解器采用RQ分解或LU分解来逼近位移Hessenberg系统的解,一旦分解,即可求解相应的系统。这种方法具有有限的3级BLAS潜力,因为不同的移位具有不同的分解。本文重新安排了RQ方法,以便可以利用不同班次之间共享的数据。因此,三角形R因子的逆向代换大部分可以用矩阵-矩阵乘法表示(3级BLAS)。所得到的算法以平铺、无溢出和任务并行的方式计算特征向量。数值实验表明,新算法在实特征向量和复特征向量的计算上都优于现有的逆迭代算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信