Trinary tools for continuously valued binary classifiers

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Michael Gleicher, Xinyi Yu, Yuheng Chen
{"title":"Trinary tools for continuously valued binary classifiers","authors":"Michael Gleicher,&nbsp;Xinyi Yu,&nbsp;Yuheng Chen","doi":"10.1016/j.visinf.2022.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Classification methods for binary (yes/no) tasks often produce a continuously valued score. Machine learning practitioners must perform model selection, calibration, discretization, performance assessment, tuning, and fairness assessment. Such tasks involve examining classifier results, typically using summary statistics and manual examination of details. In this paper, we provide an interactive visualization approach to support such continuously-valued classifier examination tasks. Our approach addresses the three phases of these tasks: calibration, operating point selection, and examination. We enhance standard views and introduce task-specific views so that they can be integrated into a multi-view coordination (MVC) system. We build on an existing comparison-based approach, extending it to continuous classifiers by treating the continuous values as trinary (positive, unsure, negative) even if the classifier will not ultimately use the 3-way classification. We provide use cases that demonstrate how our approach enables machine learning practitioners to accomplish key tasks.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 2","pages":"Pages 74-86"},"PeriodicalIF":3.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000195/pdfft?md5=6a0480389b3bd0b919007d8d1decc35d&pid=1-s2.0-S2468502X22000195-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000195","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Classification methods for binary (yes/no) tasks often produce a continuously valued score. Machine learning practitioners must perform model selection, calibration, discretization, performance assessment, tuning, and fairness assessment. Such tasks involve examining classifier results, typically using summary statistics and manual examination of details. In this paper, we provide an interactive visualization approach to support such continuously-valued classifier examination tasks. Our approach addresses the three phases of these tasks: calibration, operating point selection, and examination. We enhance standard views and introduce task-specific views so that they can be integrated into a multi-view coordination (MVC) system. We build on an existing comparison-based approach, extending it to continuous classifiers by treating the continuous values as trinary (positive, unsure, negative) even if the classifier will not ultimately use the 3-way classification. We provide use cases that demonstrate how our approach enables machine learning practitioners to accomplish key tasks.

连续值二元分类器的三元工具
二元(是/否)任务的分类方法通常产生连续值得分。机器学习从业者必须进行模型选择、校准、离散化、性能评估、调优和公平性评估。这些任务包括检查分类器结果,通常使用汇总统计和手动检查细节。在本文中,我们提供了一种交互式可视化方法来支持这种连续值分类器检查任务。我们的方法解决了这些任务的三个阶段:校准,操作点选择和检查。我们增强了标准视图,并引入了特定于任务的视图,以便将它们集成到多视图协调(MVC)系统中。我们以现有的基于比较的方法为基础,将其扩展到连续分类器,通过将连续值视为三元(正、不确定、负),即使分类器最终不会使用三向分类。我们提供了用例来演示我们的方法如何使机器学习从业者能够完成关键任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信