On the Riemann hypothesis for self-dual weight enumerators of genera three and four

Q4 Mathematics
K. Chinen, Y. Imamura
{"title":"On the Riemann hypothesis for self-dual weight enumerators of genera three and four","authors":"K. Chinen, Y. Imamura","doi":"10.55937/sut/1622825731","DOIUrl":null,"url":null,"abstract":". Zeta functions for linear codes were defined by I. Duursma in 1999. In the cases of genera less than three, S. Nishimura gave equivalent conditions for their Riemann hypothesis. In this paper, using a new method, we give similar equivalent conditions for the cases of genera three and four. Our method can be applied to smaller genera and leads to an alternative simple proofs of Nishimura’s theorems. Using these results, we examine the Riemann hypothesis of some invariant polynomials. We also discuss the cases of genera greater than four and propose some new problems.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1622825731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

. Zeta functions for linear codes were defined by I. Duursma in 1999. In the cases of genera less than three, S. Nishimura gave equivalent conditions for their Riemann hypothesis. In this paper, using a new method, we give similar equivalent conditions for the cases of genera three and four. Our method can be applied to smaller genera and leads to an alternative simple proofs of Nishimura’s theorems. Using these results, we examine the Riemann hypothesis of some invariant polynomials. We also discuss the cases of genera greater than four and propose some new problems.
关于第3类和第4类自对偶权枚举数的黎曼假设
. 线性码的Zeta函数由I. Duursma于1999年定义。在小于3属的情况下,S. Nishimura给出了他们的黎曼假设的等价条件。本文用一种新的方法,给出了第三类和第四类情况的类似等价条件。我们的方法可以应用于更小的类,并导致西村定理的另一种简单证明。利用这些结果,我们检验了一些不变多项式的黎曼假设。我们还讨论了大于4属的情况,并提出了一些新的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SUT Journal of Mathematics
SUT Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信