Gradient flows in asymmetric metric spaces

Shin-ichi Ohta, Wei Zhao
{"title":"Gradient flows in asymmetric metric spaces","authors":"Shin-ichi Ohta, Wei Zhao","doi":"10.2422/2036-2145.202206_012","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the investigation of gradient flows in asymmetric metric spaces (for example, irreversible Finsler manifolds and Minkowski normed spaces) by means of discrete approximation. We study basic properties of curves and upper gradients in asymmetric metric spaces, and establish the existence of a curve of maximal slope, which is regarded as a gradient curve in the non-smooth setting. { Introducing} a natural convexity assumption on the potential function, { which is called the $(p,\\lambda)$-convexity,} we also obtain some regularizing effects on the asymptotic behavior of curves of maximal slope. Applications include several existence results for gradient flows in Finsler manifolds, doubly nonlinear differential evolution equations on { infinite-dimensional Funk spaces}, and heat flow on compact Finsler manifolds.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202206_012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper is devoted to the investigation of gradient flows in asymmetric metric spaces (for example, irreversible Finsler manifolds and Minkowski normed spaces) by means of discrete approximation. We study basic properties of curves and upper gradients in asymmetric metric spaces, and establish the existence of a curve of maximal slope, which is regarded as a gradient curve in the non-smooth setting. { Introducing} a natural convexity assumption on the potential function, { which is called the $(p,\lambda)$-convexity,} we also obtain some regularizing effects on the asymptotic behavior of curves of maximal slope. Applications include several existence results for gradient flows in Finsler manifolds, doubly nonlinear differential evolution equations on { infinite-dimensional Funk spaces}, and heat flow on compact Finsler manifolds.
非对称度量空间中的梯度流
本文用离散逼近的方法研究了不对称度量空间(如不可逆的Finsler流形和Minkowski赋范空间)中的梯度流。研究了非对称度量空间中曲线和上梯度的基本性质,建立了非光滑条件下最大斜率曲线的存在性,并将其视为梯度曲线。{引入}势函数的自然凸性假设{称为$(p,\lambda)$-凸性},我们也得到了对最大斜率曲线渐近行为的一些正则化效果。应用包括Finsler流形中梯度流的存在性结果,无限维Funk空间上的双非线性微分演化方程,紧致Finsler流形上的热流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信