A universal HMM-based approach to image sequence classification

Peter Morguet, M. Lang
{"title":"A universal HMM-based approach to image sequence classification","authors":"Peter Morguet, M. Lang","doi":"10.1109/ICIP.1997.632028","DOIUrl":null,"url":null,"abstract":"A universal approach to the classification of video image sequences by hidden Markov models (HMMs) is presented. The extraction of low level features allows the HMM to build an internal image representation using standard training algorithms. As a result, the states of the HMMs contain probability density functions, so called image density functions, which reflect the structure of the underlying images preserving their geometry. The successful application of the approach to both the recognition of dynamic head and hand gestures demonstrates the universal validity and sensitivity of our method. Even sequences containing only small detail changes are reliably recognized.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"13 1","pages":"146-149 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.632028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A universal approach to the classification of video image sequences by hidden Markov models (HMMs) is presented. The extraction of low level features allows the HMM to build an internal image representation using standard training algorithms. As a result, the states of the HMMs contain probability density functions, so called image density functions, which reflect the structure of the underlying images preserving their geometry. The successful application of the approach to both the recognition of dynamic head and hand gestures demonstrates the universal validity and sensitivity of our method. Even sequences containing only small detail changes are reliably recognized.
基于hmm的通用图像序列分类方法
提出了一种基于隐马尔可夫模型对视频图像序列进行分类的通用方法。低级特征的提取允许HMM使用标准训练算法构建内部图像表示。因此,hmm的状态包含概率密度函数,即所谓的图像密度函数,它反映了底层图像的结构,保持了它们的几何形状。该方法在动态头部和手势识别中的成功应用证明了该方法的普遍有效性和敏感性。即使只包含微小细节变化的序列也能被可靠地识别出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信