{"title":"Sums of Squares and Sparse Semidefinite Programming","authors":"Grigoriy Blekherman, Kevin Shu","doi":"10.1137/20m1376170","DOIUrl":null,"url":null,"abstract":"We consider two seemingly unrelated questions: the relationship between nonnegative polynomials and sums of squares on real varieties, and sparse semidefinite programming. This connection is natural when a real variety $X$ is defined by a quadratic square-free monomial ideal. In this case nonnegative polynomials and sums of squares on $X$ are also natural objects in positive semidefinite matrix completion. Nonnegative quadratic forms over $X$ naturally correspond to partially specified matrices where all of the fully specified square blocks are PSD, and sums of squares quadratic forms naturally correspond to partially specified matrices which can be completed to a PSD matrix. We show quantitative results on approximation of nonnegative polynomials by sums of squares, which leads to applications in sparse semidefinite programming.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20m1376170","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
We consider two seemingly unrelated questions: the relationship between nonnegative polynomials and sums of squares on real varieties, and sparse semidefinite programming. This connection is natural when a real variety $X$ is defined by a quadratic square-free monomial ideal. In this case nonnegative polynomials and sums of squares on $X$ are also natural objects in positive semidefinite matrix completion. Nonnegative quadratic forms over $X$ naturally correspond to partially specified matrices where all of the fully specified square blocks are PSD, and sums of squares quadratic forms naturally correspond to partially specified matrices which can be completed to a PSD matrix. We show quantitative results on approximation of nonnegative polynomials by sums of squares, which leads to applications in sparse semidefinite programming.