Multi-Modal Medical Data Analysis Platform (3MDAP) for analysis and predictive modelling of cancer trial data

Georgios C. Manikis, Evaggelia Maniadi, M. Tsiknakis, K. Marias
{"title":"Multi-Modal Medical Data Analysis Platform (3MDAP) for analysis and predictive modelling of cancer trial data","authors":"Georgios C. Manikis, Evaggelia Maniadi, M. Tsiknakis, K. Marias","doi":"10.1109/IARWISOCI.2014.7034645","DOIUrl":null,"url":null,"abstract":"This paper presents a user-friendly web-based collaborative environment for analyzing, assessing the quality of large multi-level clinical datasets and deriving predictive models. The Multi-Modal Medical Data Analysis Platform (3MDAP) follows two main objectives: a) to empower the user to analyze with ease clinic-genomic data in order to get simple statistics on selected parameters, perform survival analyses, compare regiments in selected cohort of patient and obtain genomic analysis results, and b) to perform heterogeneous clinical data modeling for deriving and cross-validating in multiple datasets predictive clinic-genomic models of patient response, and assessing the value of candidate biomarkers. 3MDAP's enhanced functionality is coupled with a security framework for enabling user authentication and authorization, a set of services that facilitate the process of loading and retrieving data from a data-warehouse (either locally based or in a cloud), and a widget-based front-end environment for assisting users in interacting with the platform's functionality in a user friendly manner. For each running analysis, 3MDAP supports an engine to create dynamically analysis reports. Last, the framework provides an internal database where a full analysis record of an executed analysis is stored, including metadata information (i.e. timestamp information, the examined data, any memory constraints, the dynamically generated reports in both .pdf and .html format, and etc.) in order to be used for future reference.","PeriodicalId":93358,"journal":{"name":"Proceedings of the 2014 6th International Advanced Research Workshop on In Silico Oncology and Cancer Investigation : the CHIC Project Workshop (IARWISOCI) : Athens, Greece, 3-4 November 2014. International Advanced Research Workshop on...","volume":"59 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 6th International Advanced Research Workshop on In Silico Oncology and Cancer Investigation : the CHIC Project Workshop (IARWISOCI) : Athens, Greece, 3-4 November 2014. International Advanced Research Workshop on...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IARWISOCI.2014.7034645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a user-friendly web-based collaborative environment for analyzing, assessing the quality of large multi-level clinical datasets and deriving predictive models. The Multi-Modal Medical Data Analysis Platform (3MDAP) follows two main objectives: a) to empower the user to analyze with ease clinic-genomic data in order to get simple statistics on selected parameters, perform survival analyses, compare regiments in selected cohort of patient and obtain genomic analysis results, and b) to perform heterogeneous clinical data modeling for deriving and cross-validating in multiple datasets predictive clinic-genomic models of patient response, and assessing the value of candidate biomarkers. 3MDAP's enhanced functionality is coupled with a security framework for enabling user authentication and authorization, a set of services that facilitate the process of loading and retrieving data from a data-warehouse (either locally based or in a cloud), and a widget-based front-end environment for assisting users in interacting with the platform's functionality in a user friendly manner. For each running analysis, 3MDAP supports an engine to create dynamically analysis reports. Last, the framework provides an internal database where a full analysis record of an executed analysis is stored, including metadata information (i.e. timestamp information, the examined data, any memory constraints, the dynamically generated reports in both .pdf and .html format, and etc.) in order to be used for future reference.
多模态医学数据分析平台(3MDAP),用于癌症试验数据的分析和预测建模
本文提出了一个用户友好的基于web的协作环境,用于分析、评估大型多层次临床数据集的质量并推导预测模型。多模式医疗数据分析平台(3MDAP)有两个主要目标:A)使用户能够轻松地分析临床基因组数据,以便获得选定参数的简单统计数据,进行生存分析,在选定的患者队列中比较治疗组并获得基因组分析结果;b)执行异构临床数据建模,以便在多个数据集中推导和交叉验证预测患者反应的临床基因组模型,并评估候选生物标志物的价值。3MDAP的增强功能与支持用户身份验证和授权的安全框架、促进从数据仓库(本地或云)加载和检索数据过程的一组服务以及帮助用户以用户友好的方式与平台功能交互的基于小部件的前端环境相结合。对于每个正在运行的分析,3MDAP支持一个引擎来创建动态分析报告。最后,框架提供了一个内部数据库,其中存储了执行分析的完整分析记录,包括元数据信息(即时间戳信息,检查数据,任何内存约束,动态生成的。pdf和。html格式的报告等),以便将来参考使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信