Distributed Denial-of-Service Resilient Control for Urban Air Mobility Applications

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Shanelle G. Clarke, Sounghwan Hwang, Omanshu Thapliyal, Inseok Hwang
{"title":"Distributed Denial-of-Service Resilient Control for Urban Air Mobility Applications","authors":"Shanelle G. Clarke, Sounghwan Hwang, Omanshu Thapliyal, Inseok Hwang","doi":"10.2514/1.i011222","DOIUrl":null,"url":null,"abstract":"Urban air mobility (UAM) systems are characterized by the heterogeneity of participating aerial vehicles (AVs). Participating AVs are expected to cooperate with each other while maintaining flexibility in individual missions and reacting to the possibility of cyberattacks and security threats. In this paper, we focus on the vulnerabilities of the UAM cyberphysical system against distributed denial-of-service (DDOS) cyberattacks. We develop a resilient control strategy for the AVs navigating through the UAM airspace to mitigate the effect of DDOS cyberattacks. A graph-theoretic vulnerability metric is proposed. Each AV can compute its vulnerability against DDOS cyberattacks in a fully distributed manner using this metric. Based on this computed metric, the AVs self-organize to minimize collision risk in the operating airspace after assessing self-vulnerability. This reconfiguration is also carried out in a fully distributed manner. The proposed resilient control is proven to reduce vulnerability in a probabilistic manner. This reduced vulnerability holds against DDOS cyberattacks with a known attack budget.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.i011222","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Urban air mobility (UAM) systems are characterized by the heterogeneity of participating aerial vehicles (AVs). Participating AVs are expected to cooperate with each other while maintaining flexibility in individual missions and reacting to the possibility of cyberattacks and security threats. In this paper, we focus on the vulnerabilities of the UAM cyberphysical system against distributed denial-of-service (DDOS) cyberattacks. We develop a resilient control strategy for the AVs navigating through the UAM airspace to mitigate the effect of DDOS cyberattacks. A graph-theoretic vulnerability metric is proposed. Each AV can compute its vulnerability against DDOS cyberattacks in a fully distributed manner using this metric. Based on this computed metric, the AVs self-organize to minimize collision risk in the operating airspace after assessing self-vulnerability. This reconfiguration is also carried out in a fully distributed manner. The proposed resilient control is proven to reduce vulnerability in a probabilistic manner. This reduced vulnerability holds against DDOS cyberattacks with a known attack budget.
城市空中交通应用的分布式拒绝服务弹性控制
城市空中交通(UAM)系统的特点是参与飞行器(AVs)的异质性。预计参与的无人驾驶飞机将相互合作,同时保持各自任务的灵活性,并对可能发生的网络攻击和安全威胁做出反应。在本文中,我们重点研究了UAM网络物理系统对分布式拒绝服务(DDOS)网络攻击的漏洞。我们为通过UAM空域导航的av开发了一种弹性控制策略,以减轻DDOS网络攻击的影响。提出了一种图论脆弱性度量方法。每个AV可以使用该度量以完全分布式的方式计算其针对DDOS网络攻击的漏洞。基于这一计算度量,自动驾驶飞机在评估自身脆弱性后,自组织以最小化在运行空域的碰撞风险。这种重新配置也是以完全分布式的方式进行的。所提出的弹性控制以概率方式降低了脆弱性。这种减少的漏洞适用于已知攻击预算的DDOS网络攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
13.30%
发文量
58
审稿时长
>12 weeks
期刊介绍: This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信