{"title":"Mechanism and kinetics of astrophysically relevant gas-phase stereoinversion in glutamic acid: A computational study","authors":"Namrata Rani, Vikas","doi":"10.1016/j.molap.2019.100061","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Enantiomeric excess of </span>amino acids observed in the meteoritic samples of </span>carbonaceous chondrites has incited many researchers to search for an extra-terrestrial origin of life on prebiotic Earth. However, in a non-catalytic environment, only racemic amino acids are synthesized. This computational quantum-mechanical study explores non-catalytic mechanistic pathways for stereoinversion in proteinogenic </span><em>L</em><span><span><span>-glutamic acid, which may be observable under gas-phase conditions of interstellar medium (ISM). The multi-step stereoinversion pathways proposed in this study are traced through a global reaction route mapping (GRRM) strategy utilizing density-functional and coupled-cluster theories. Notably, a few of the pathways are observed to proceed through simultaneous intramolecular </span>hydrogen atom<span> and proton transfer<span><span> as well as through a proton-coupled electron transfer<span> mechanism. The intermediates explored along the stereoinversion pathways resemble ammonium ylide and </span></span>imine<span>, the key ingredients in Strecker synthesis of amino acids. The thermodynamic and </span></span></span></span>kinetic analysis<span> of the stereoinversion pathways in different temperature regions of ISM are also carried out, predicting the streoinversion to proceed over any dissociation of intermediates and conformers<span> of glutamic acid along the pathways. However, initial step of the pathways involves an unsurmountable energy barrier though the key step responsible for stereoinversion has a very low energy barrier and is predicted to proceeds with significant rates. The work suggests the possibility of observing stereoinversion of glutamic acid in the warmer regions of ISM.</span></span></span></p></div>","PeriodicalId":44164,"journal":{"name":"Molecular Astrophysics","volume":"18 ","pages":"Article 100061"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molap.2019.100061","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405675819300363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 7
Abstract
Enantiomeric excess of amino acids observed in the meteoritic samples of carbonaceous chondrites has incited many researchers to search for an extra-terrestrial origin of life on prebiotic Earth. However, in a non-catalytic environment, only racemic amino acids are synthesized. This computational quantum-mechanical study explores non-catalytic mechanistic pathways for stereoinversion in proteinogenic L-glutamic acid, which may be observable under gas-phase conditions of interstellar medium (ISM). The multi-step stereoinversion pathways proposed in this study are traced through a global reaction route mapping (GRRM) strategy utilizing density-functional and coupled-cluster theories. Notably, a few of the pathways are observed to proceed through simultaneous intramolecular hydrogen atom and proton transfer as well as through a proton-coupled electron transfer mechanism. The intermediates explored along the stereoinversion pathways resemble ammonium ylide and imine, the key ingredients in Strecker synthesis of amino acids. The thermodynamic and kinetic analysis of the stereoinversion pathways in different temperature regions of ISM are also carried out, predicting the streoinversion to proceed over any dissociation of intermediates and conformers of glutamic acid along the pathways. However, initial step of the pathways involves an unsurmountable energy barrier though the key step responsible for stereoinversion has a very low energy barrier and is predicted to proceeds with significant rates. The work suggests the possibility of observing stereoinversion of glutamic acid in the warmer regions of ISM.
期刊介绍:
Molecular Astrophysics is a peer-reviewed journal containing full research articles, selected review articles, and thematic issues. Molecular Astrophysics is a new journal where researchers working in planetary and exoplanetary science, astrochemistry, astrobiology, spectroscopy, physical chemistry and chemical physics can meet and exchange their ideas. Understanding the origin and evolution of interstellar and circumstellar molecules is key to understanding the Universe around us and our place in it and has become a fundamental goal of modern astrophysics. Molecular Astrophysics aims to provide a platform for scientists studying the chemical processes that form and dissociate molecules, and control chemical abundances in the universe, particularly in Solar System objects including planets, moons, and comets, in the atmospheres of exoplanets, as well as in regions of star and planet formation in the interstellar medium of galaxies. Observational studies of the molecular universe are driven by a range of new space missions and large-scale scale observatories opening up. With the Spitzer Space Telescope, the Herschel Space Observatory, the Atacama Large Millimeter/submillimeter Array (ALMA), NASA''s Kepler mission, the Rosetta mission, and more major future facilities such as NASA''s James Webb Space Telescope and various missions to Mars, the journal taps into the expected new insights and the need to bring the various communities together on one platform. The journal aims to cover observational, laboratory as well as computational results in the galactic, extragalactic and intergalactic areas of our universe.