{"title":"Voter models on subcritical scale‐free random graphs","authors":"J. Fernley, Marcel Ortgiese","doi":"10.1002/rsa.21107","DOIUrl":null,"url":null,"abstract":"The voter model is a classical interacting particle system modelling how consensus is formed across a network. We analyze the time to consensus for the voter model when the underlying graph is a subcritical scale‐free random graph. Moreover, we generalize the model to include a “temperature” parameter controlling how the graph influences the speed of opinion change. The interplay between the temperature and the structure of the random graph leads to a very rich phase diagram, where in the different phases different parts of the underlying geometry dominate the time to consensus. Finally, we also consider a discursive voter model, where voters discuss their opinions with their neighbors. Our proofs rely on the well‐known duality to coalescing random walks and a detailed understanding of the structure of the random graphs.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"18 1","pages":"376 - 429"},"PeriodicalIF":0.9000,"publicationDate":"2022-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21107","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
The voter model is a classical interacting particle system modelling how consensus is formed across a network. We analyze the time to consensus for the voter model when the underlying graph is a subcritical scale‐free random graph. Moreover, we generalize the model to include a “temperature” parameter controlling how the graph influences the speed of opinion change. The interplay between the temperature and the structure of the random graph leads to a very rich phase diagram, where in the different phases different parts of the underlying geometry dominate the time to consensus. Finally, we also consider a discursive voter model, where voters discuss their opinions with their neighbors. Our proofs rely on the well‐known duality to coalescing random walks and a detailed understanding of the structure of the random graphs.
期刊介绍:
It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness.
Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.